# BOUN ARY BAY VETERINARY SPECIALTY HOSPITAL

24-Hour Specialty, Emergency & Critical Care Langley, BC

# "Wonky Back Ends":

The clinician's approach to hind limb weakness

**Case Studies** 

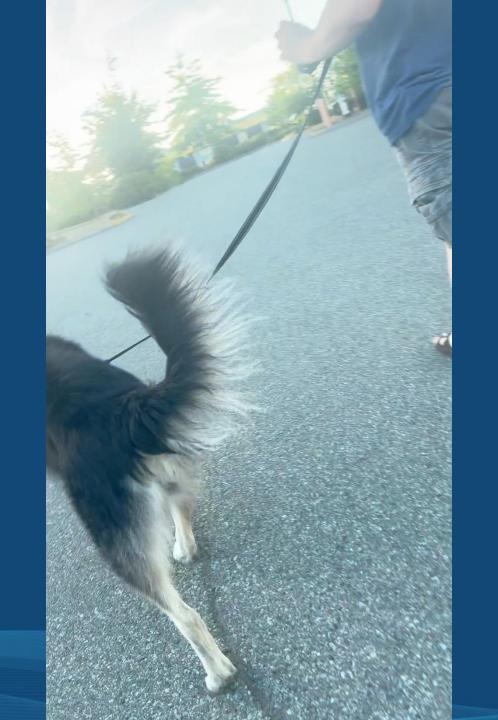
Greta VanDeventer, DVM, DACVS-SA Elizabeth Meiman, DVM, DACVIM (Neurology)

## Thank you to our lecture session sponsor





## **Case Study Goals**


- Review gait evaluation videos
- Classify the character & type of lameness/weakness
- Form a differentials list
- Discuss ancillary diagnostics
- Determine referral goals



## Formulating a Differentials List

- "VITAMIN D" vs. "DAMNIT V" acronym
  - Vascular
  - Inflammatory/infectious
  - Trauma
  - Anomalous
  - Metabolic
  - •Idiopathic
  - Neoplasia
  - Degenerative







# Case 1

Case Studies

- **History:** 1 year history of progressive hind end weakness, with acute non-weightbearing lameness on left hind 1 month ago
  - Weakness started in both hind legs, with reduced exercise tolerance
  - Acute limping started when she got off her bed, no trauma witnessed
  - Started toe-touching on the left hind 3-4 days ago, after starting
     Metacam and gabapentin
  - Not perceived to be in pain by owner no yelping or crying at home.



#### Ortho Exam Findings:

- Gait: Grade 3 LH lameness, grade 2 RF lameness
- Thoracic limbs: <u>Right elbow thickening with mild effusion</u>, reduced flexion; no other joint pain, effusion, instability, or altered range of motion identified in any joint; long bones palpate normally
- Right pelvic limb: Moderate stifle effusion without palpable medial buttress, no cranial drawer or tibial thrust elicited, mild discomfort on stifle
   hyperextension; hip, tarsus, digits, and long bones palpate normally; no overt iliopsoas pain on direct palpation
- Left pelvic limb: Moderate stifle effusion with mild medial buttress, positive cranial drawer & tibial thrust, consistent click on stifle ROM concerning for meniscal injury; hip, tarsus, digits, and long bones palpate normally; no overt iliopsoas pain on direct palpation

#### Neuro Exam Findings:

- Mentation: Bright, alert, and responsive
- Gait/Posture: Weight-bearing lameness in left pelvic limb and right thoracic limb, no overt ataxia or paresis identified, normal stance
- Cranial Nerves: No cranial nerve deficits identified
- Postural reactions: Paw placement normal in all limbs with support, slightly delayed in pelvic limbs without support
- Spinal Reflexes: Withdrawals normal x4, patellar reflex normal x2, normal perineal reflex & anal tone
- Spinal Hyperesthesia: No pain elicited on palpation, normal cervical range of motion



What kind of weakness? Neurologic or orthopedic?

**ORTHOPEDIC** – stifle, foot, tarsus, polyarthropathy

### Less likely to be neurologic...

- Neurolocalization: Focal left L4-S3 (myelopathy vs. radiculopathy vs. neuropathy vs. junctionopathy vs. myopathy)



#### Differentials?

- Cranial cruciate ligament disease
- Immune-mediated polyarthropathy
- Digit foreign body/wound
- Digital corn
- Infectious arthropathy
- Neoplasia



## **Cranial Cruciate Ligament Disease**

#### Common history:

- History of recurrent short-term lameness over the months preceding acute persistent lameness
- No or only mild trauma preceding lameness
- Often improves slightly over 3-5 days of rest +/- NSAIDs

#### Exam findings:

- Stifle effusion
- Positive cranial drawer +/- tibial thrust
  - Partial vs complete tear
- +/- Medial buttress
- +/- Crepitus

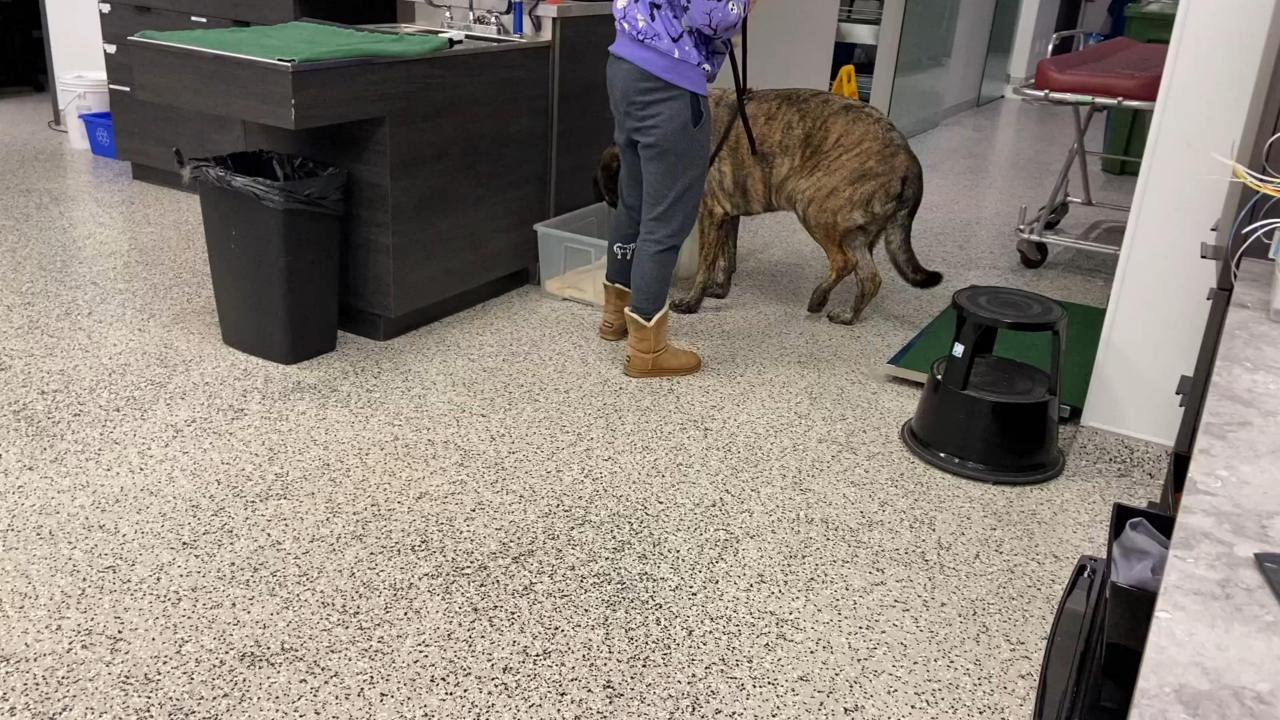


## **Cranial Cruciate Ligament Disease**

#### Diagnostics:

- Orthogonal radiographs
- Advanced imaging US/MRI
- Arthroscopic evaluation

#### Treatment Options:


- Conservative management
- Extracapsular Suture Stabilization
- Geometric Procedures
  - TPLO
  - TTA

















## **Immune-Mediated Polyarthropathy**

#### Common history:

- Generalized weakness / lethargy
- Static to worse with time/rest
- Minimal response to pain medications
- Inappetence, generalized systemic illness

#### Exam findings:

- Multi-limb "walking on eggshells" gait
- Multiple effusive joints without instability, often bilaterally symmetric
- Pain on joint range of motion
- Fever



## **Immune-Mediated Polyarthropathy**

#### Diagnostics:

- CBC/Chemistry, UA
- Tickborne disease testing
- Arthrocentesis for joint fluid cytology & culture
- Thoracic radiographs & abdominal ultrasound/CT
- Radiographs of affected joints <1% erosive</li>

#### Treatment Options:

- Immunosuppression 60% idiopathic
- Treat any underlying cause
  - Type II Disease distant from joint (tickborne, vaccine, medication) 25%
  - Type III Enteropathic 4%
  - Type IV Paraneoplastic 2%



# Digit/Foot Injury

#### Common history:

- Acute onset of lameness, often non-weightbearing
- Chewing/licking at foot
- Corns Greyhounds

#### Exam findings:

- Lameness often significant, off-loads when standing
- Digit swelling +/- bruising
- +/- Crepitus
- +/- Draining tract



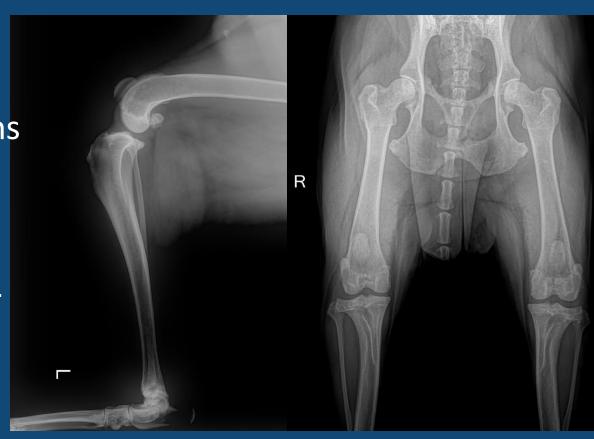
# Digit/Foot Injury

#### Diagnostics:

- Radiographs
- CT +/- fistulogram
- Ultrasound
- MRI
- Bacterial culture
- +/- Tissue biopsy

#### Treatment Options:

- Surgical explore +/- stabilization
- Digit amputation
- Superficial digital flexor tenectomy corns




#### Diagnostics:

Orthogonal left stifle radiographs

#### Treatment:

- Left TPLO
  - Incompetent partial CCL tear
  - Intact meniscus











# Case 2

Case Studies

History: 4 month history of slowly progressive hind limb scuffing

- Started in right hind limb, more recently has been involving both hind limbs.
- Not perceived to be in pain by owners no yelping or crying at home.
- Was referred to a neurologist at onset of signs; owner elected for conservative medical management





#### Ortho Exam Findings:

- Gait: Bilateral pelvic limb gait anomaly without overt lameness
- Thoracic limbs: No joint pain, effusion, instability, or altered range of motion identified in any joint; long bones palpate normally
- Pelvic limbs: No stifle effusion or instability; no patellar luxation elicited bilaterally; hip, tarsus, digits, and long bones palpate normally; no overt iliopsoas pain on direct palpation



#### Neuro Exam findings:

- Mentation: Bright, alert, responsive
- Gait/posture: <u>ambulatory with moderate-severe UMN/GP</u> <u>paraparesis/ataxia in pelvic limbs; slightly "robotic" quality to pelvic limb movements suggestive of a chronic myelopathy</u>
- Cranial nerves: normal
- Postural reactions: absent paw placement & delayed hopping in both pelvic limbs
- Segmental reflexes/muscle tone: mild global muscle atrophy of pelvic limbs, normal patellar x 2, normal withdrawal x 4, CT reflex cut-off around mid-thoracic region, perineal reflex normal
- Spinal hyperesthesia: no pain elicited on palpation of vertebral column

What kind of weakness? Neurologic or orthopedic?

#### **NEUROLOGIC**

- Neurolocalization: T3-L3 myelopathy



- Differentials?
  - Chronic intervertebral disc protrusion (IVDP)
  - Vertebral malformation
  - Subarachnoid diverticulum (SAD)
  - Constrictive (fibrotic) myelopathy
  - Neoplasia
  - Fibrocartilaginous embolism (FCE)



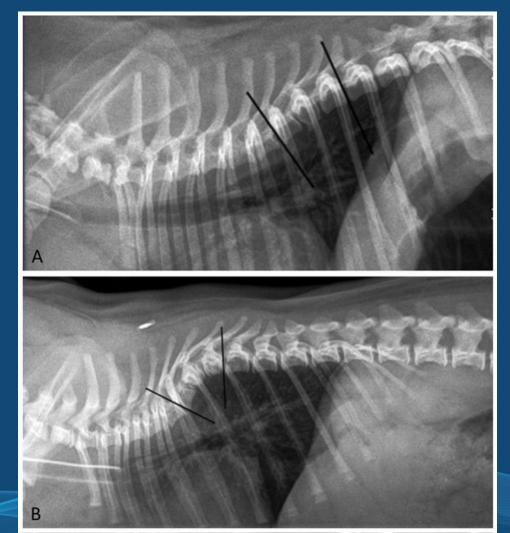
- Very common in small brachycephalic dog breeds
- Prevalence of vertebral malformations in neurologically normal dogs:
  - French bulldog: ~70 93.5%
  - Pug: ~3.7 97%
  - English bulldog: ~24 84%
- Most affected dogs exhibit clinical signs by one year of age
  - Signs can also develop later in life

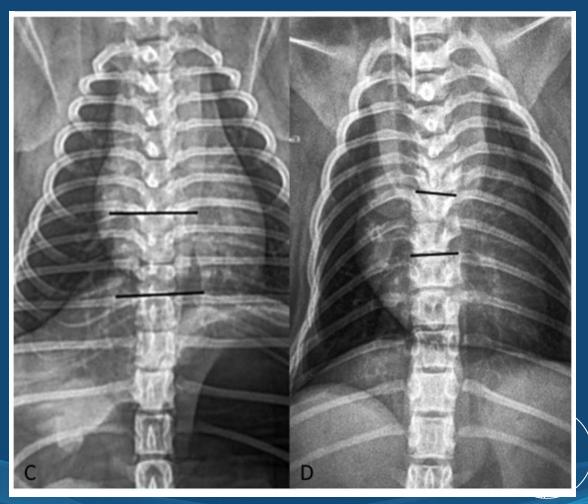


#### Common history:

- Often brachycephalic breeds (Frenchie, Pug, English bulldog), but can affect any breed
- Typically <1 year old; can be older if chronic instability & spinal cord damage</p>
- Slow onset, progressive paraparesis & ataxia
- No evidence of pain

#### Exam findings:


- Varying degrees of paraparesis & GP ataxia
- Proprioceptive deficits
- +/- Cutaneous trunci reflex deficits
- Lack of spinal pain




- Diagnostics:
  - Screening spinal radiographs
    - Cobb angle >35° increased likelihood of clinical signs



■ Cobb angle >35° - increased likelihood of clinical signs





# Vertebral malformations

### Diagnostics:

- Screening spinal radiographs
  - Cobb angle >35° increased likelihood of clinical signs
- MRI
  - Characterization of compressive disease & spinal cord injury
- CT
  - Characterization of osseous malformations
  - Surgical planning



# **Vertebral malformations**

- **■** Treatment options:
  - Surgery
    - Spinal stabilization +/decompression
  - Medical management
    - Anti-inflammatory steroid trial

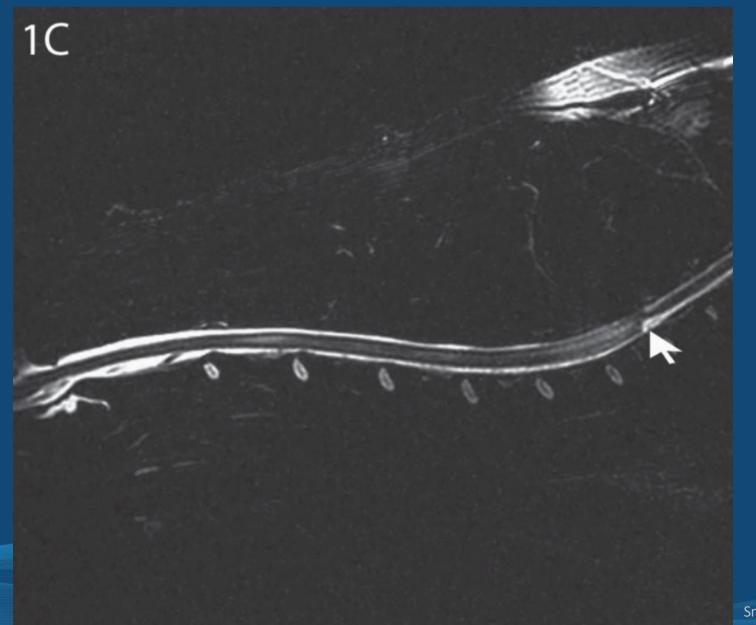


- Compressive dilation of the subarachnoid space
- Etiology / pathogenesis not well understood
- Pugs, French bulldogs, Rottweilers over-represented
- Can occur along the cervical or thoracolumbar spine
  - 85% dogs with cervical SAD large/giant breeds
  - 82% dogs with TL SAD small/medium breeds



### Common history:

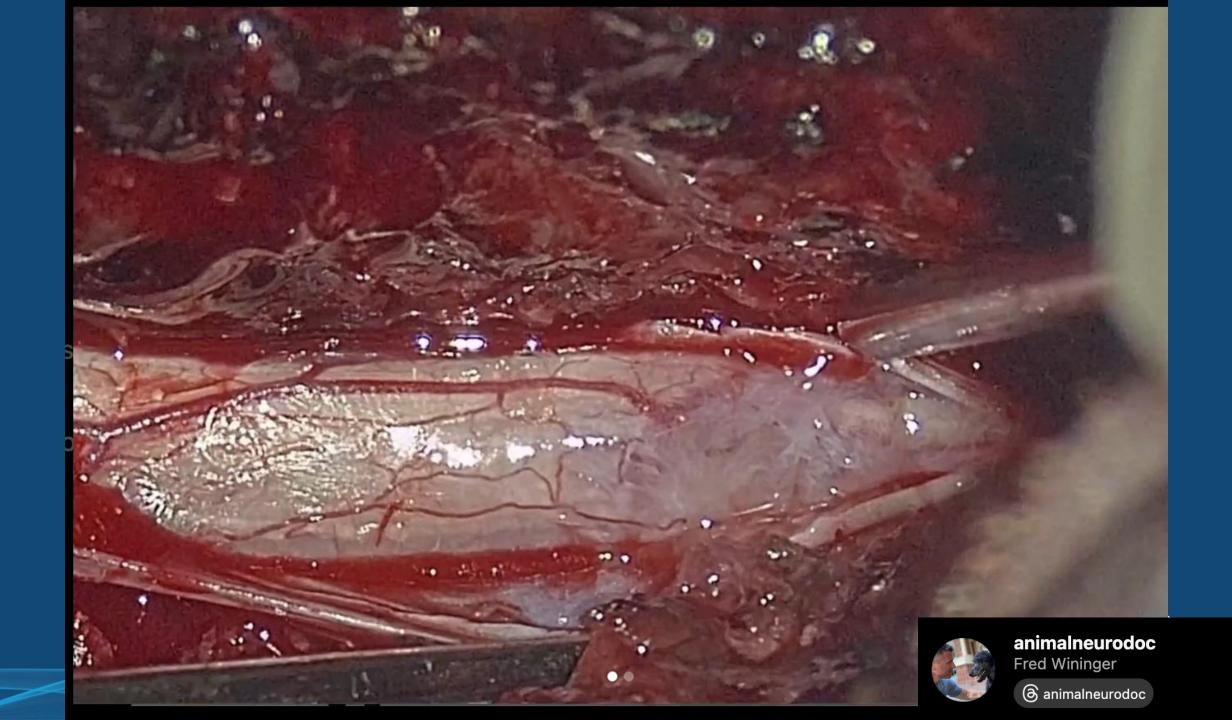
- Often Frenchie, Pug, Rottweilers; but can affect any breed
- Variable age of onset
- Slow onset, progressive paraparesis (or tetraparesis) & ataxia
- No evidence of pain
- +/- fecal (and/or urinary) incontinence


### Exam findings:

- Varying degrees of GP ataxia > paraparesis (tetraparesis)
- Proprioceptive deficits
- +/- Cutaneous trunci reflex deficits
- Lack of spinal pain



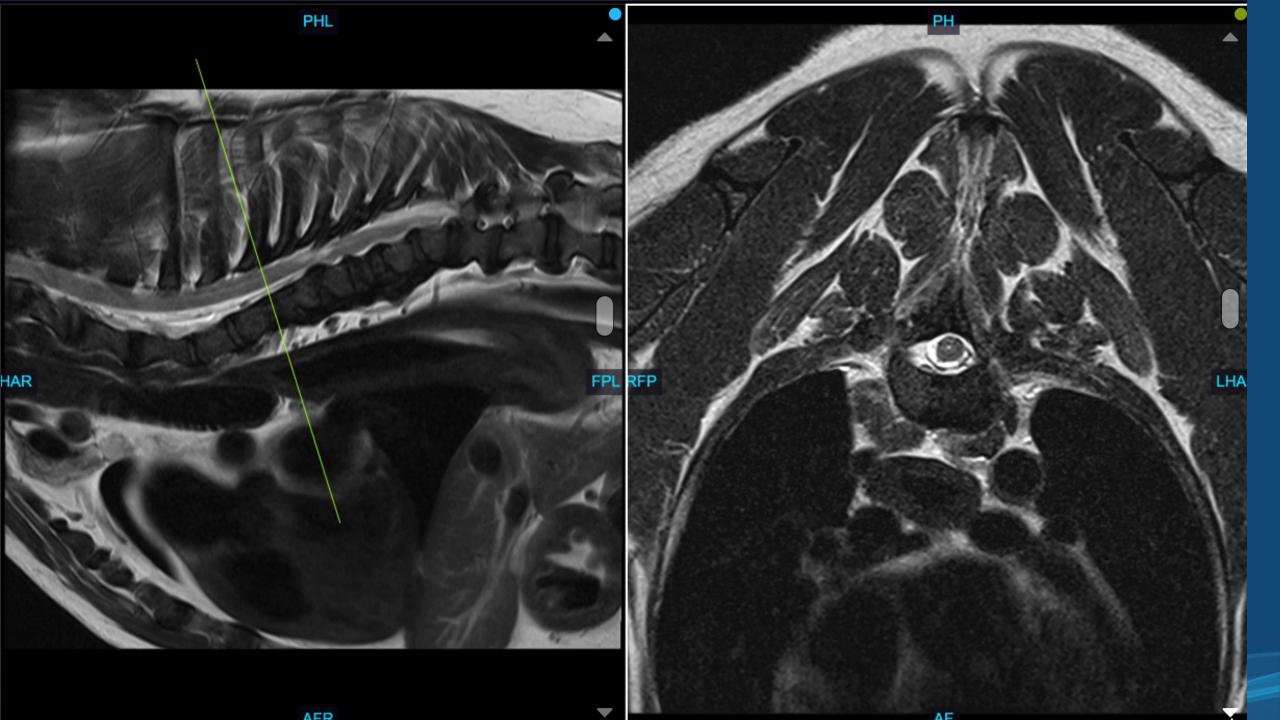
- Diagnostics:
  - Screening spinal radiographs
  - MRI
  - -+/- CT
    - Characterization of osseous malformations
    - Surgical planning

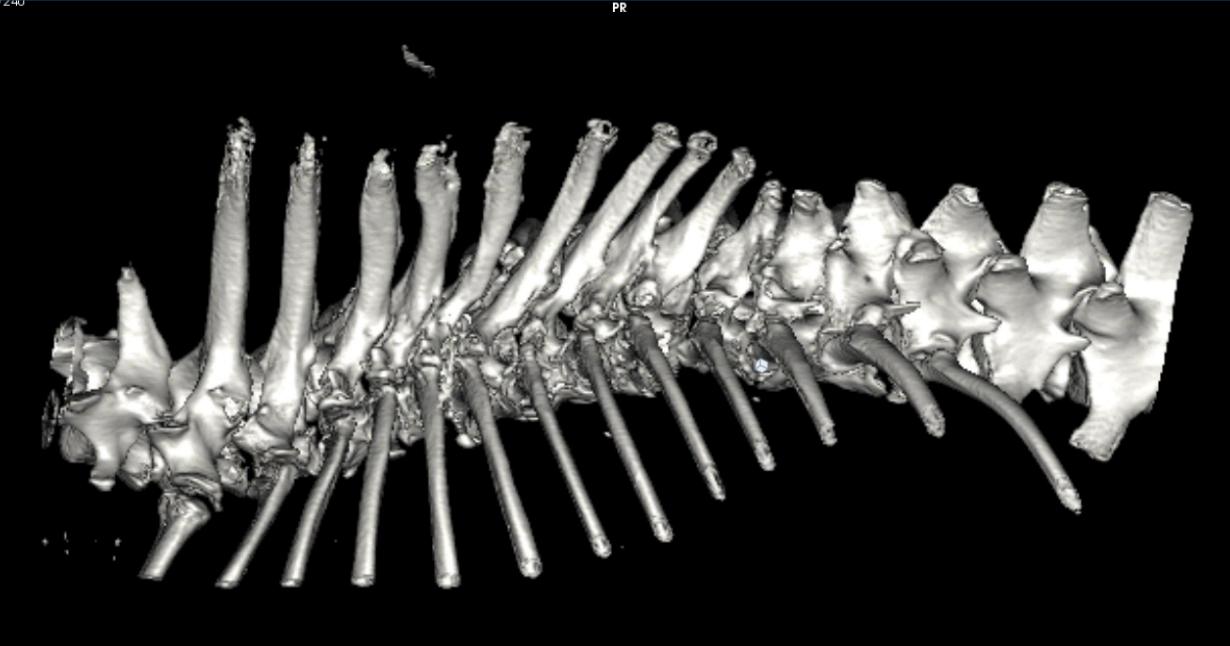







- Treatment options:
  - Surgery
    - Hemilaminectomy + durectomy
  - Medical management
    - Anti-inflammatory steroid trial




# 5 yo MN French Bulldog

- Diagnostics
  - Thoracolumbar spine MRI + CT scan







# 5 yo MN French Bulldog

### Diagnostics

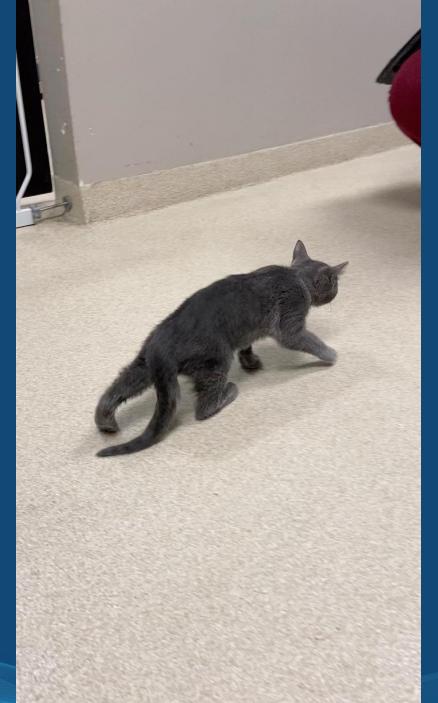
Thoracolumbar spine MRI + CT scan

### Treatment

- Surgery spinal stabilization
- Medical management anti-inflammatory prednisone



# Case 3


Case Studies

History: acute onset of hind limb weakness

- Started after a large cardboard box fell on him while playing with a housemate – afterwards immediately was having difficulty ambulating in hind limbs, hissed when palpated on hind end
- Has been leaving small dribbles of urine around the home
- Went to primary care veterinarian and had radiographs of pelvis / spine









### Ortho Exam Findings:

- Gait: bilateral plantigrade stance without overt lameness
- Thoracic limbs: No other joint pain, effusion, instability, or altered range of motion identified in any joint; long bones palpate normally
- Pelvic limbs: No stifle effusion or instability; no patellar luxation elicited bilaterally; common calcanean tendons palpably intact without thickening, discomfort, or atrophy; hip, tarsus, digits, and long bones palpate normally



### Neuro Exam findings:

- Mentation: Bright, alert, responsive, feisty for handling
- Gait/posture: ambulatory with plantigrade stance in both pelvic limbs. Flaccid tail tone, no tail movement observed
- Nociception: intact in tail & perineal region
- Cranial nerves: normal
- Postural reactions: <u>hopping mildly delayed in left pelvic limb</u>, otherwise normal in all limbs
- Segmental reflexes/muscle tone: normal patellar reflex x 2, withdrawal reflex slightly decreased in both pelvic limbs, anal sphincter tone decreased, perineal reflex absent
- Spinal hyperesthesia: pain elicited on palpation in caudal lumba region

What kind of weakness? Neurologic or orthopedic?

### EITHER IS POSSIBLE

### **NEUROLOGIC**

Neurolocalization: L7-Cd (myelopathy vs. radiculopathy vs. neuropathy vs. myopathy)

### **ORTHOPEDIC**

- Bilateral common calcanean tendon



- Differentials?
  - Sacrocaudal luxation (tail pull injury)
  - Bilateral complete common calcanean tendon rupture
  - Caudal lumbar intervertebral disc extrusion
  - Degenerative / inflammatory neuropathy
  - Diabetic neuropathy



- "Tail-pull injury"
- Injury to nerve roots in the terminal spinal cord
  - Hemorrhage, edema, avulsion
- Different degrees of peripheral nerve injury
  - Neuropraxia
  - Axonotmesis
  - Neurotmesis
- Often have concurrent traumatic injuries
  - Pelvic fractures
  - Sacroiliac luxation
  - Other non-pelvic orthopedic injuries



# Evaluation of prognostic factors for return of urinary and defecatory function in cats with sacrocaudal luxation

Elizabeth Couper and Steven De Decker

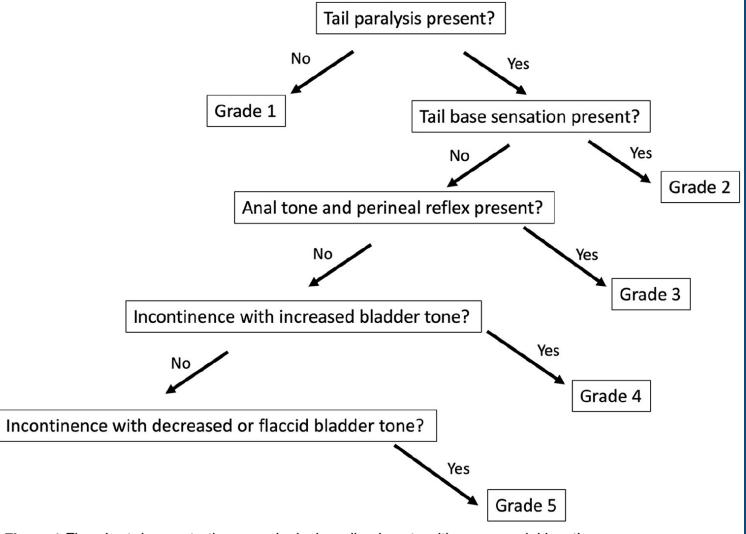



Figure 1 Flowchart demonstrating neurological grading in cats with sacrocaudal luxation

Journal of Feline Medicine and Surgery 2020, Vol. 22(10) 928-934

© The Author(s) 2019
Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1098612X19895053 journals.sagepub.com/home/jfm

This paper was handled and processed by the European Editorial Office (ISFM) for publication in *JFMS* 

**\$**SAGE

Recovery of urinary continence by neurologic grade:

■ Grade 1: 100% (0d)

■ Grade 2: 100% (4d)

■ Grade 3: 95% (2d)

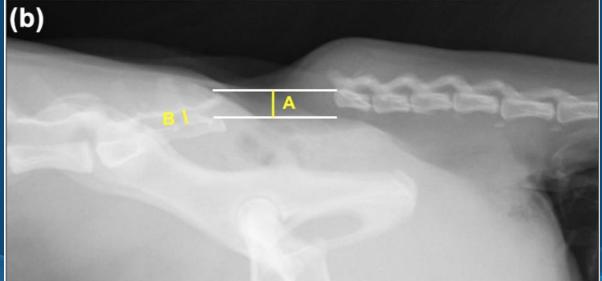
■ Grade 4: 89% (12d)

■ Grade 5: 50% (33d)



### Common history:

- Traumatic injury involving traction on the tail
  - Tail caught under motor vehicle wheel, in recliner chair...etc


### Exam findings:

- Paraparesis or plantigrade stance/gait
- Tail paralysis +/- loss of nociception
- +/- loss of anal tone & perineal nociception
- Urinary / fecal incontinence
- Large, soft bladder on palpation that is easily expressible



- Diagnostics:
  - Radiographs (pelvis, tail, pelvic limbs)





- Treatment options:
  - -+/- Tail amputation
  - Bladder care
    - Manual expression
    - Intermittent catheterization
    - In-dwelling catheterization
  - Urinary medications
    - Prazosin
    - Bethanechol



# Common Calcanean Tendon Injury

### Common history:

- Acute onset of lameness
- History of sharp or blunt trauma/laceration
- Labs/Dobermans, older female cats degenerative tendinopathy

### Exam findings:

- Claw stance partial tear (gastrocnemius only)
- Plantigrade stance complete rupture (all components)
- +/- skin laceration
- Palpable defects/thickenings of tendon



# **Common Calcanean Tendon Injury**

### Diagnostics:

- Ultrasound/MRI
- Radiographs

### Treatment Options:

- Conservative management
  - Orthotic/cast to immobilize tarsus in extension
  - Orthobiologics?
- Primary tendon repair
  - Tendon transposition, allograft, synthetic mesh/grafts
  - Postoperative immobilization



### Diagnostics

- Screening lab work (CBC/chemistry/UA)
  - Fructosamine
- Screening radiographs to rule out osseous pathology (e.g. osseous traumatic injury, osseous neoplasm)







#### Treatment

- Medical management anti-inflammatory & analgesic medications
- Surgery spinal stabilization, if indicated



# Case 4

Case Studies

# 7 yo MN Shiba Inu

History: left forelimb lameness and progressive hind limb ataxia

- Started limping on left front leg 2-3 weeks ago; was taken to primary care veterinarian and started on carprofen
- Limp has been improving, but he is now weaker in his hind limbs
- Not perceived to be painful by his owners







# 7 yo MN Shiba Inu

### Ortho Exam Findings:

- Gait: Mild left forelimb lameness at a walk
- Thoracic limbs: No joint pain, effusion, instability, or altered range of motion identified in any joint; long bones palpate normally
- Pelvic limbs: Slightly reduced hip extension bilaterally with normal abduction; no stifle effusion or instability; no patellar luxation elicited bilaterally; tarsus, digits, and long bones palpate normally; no overt pain on direct iliopsoas palpation



# 7 yo MN Shiba Inu

### Neuro Exam findings:

- Mentation: Bright, alert, responsive
- Gait/posture: <u>ambulatory with mild left thoracic limb lameness</u>, <u>mild-moderate UMN/GP paraparesis/ataxia in pelvic limbs</u>. <u>Subjectively stiff/low head carriage</u>
- Cranial nerves: normal
- Postural reactions: <u>delayed paw placement & hopping in the pelvic</u> <u>limbs, left worse than right. Mild delay in paw placement & hopping</u> <u>in left thoracic limb</u>
- Segmental reflexes/muscle tone: <u>decreased tone of the left thoracic</u> <u>limb.</u> Normal patellar x 2, normal withdrawal x 4, CT reflex normal, perineal reflex normal
- Spinal hyperesthesia: <u>resistant on cervical range of motion</u>, <u>especially with ventral flexion</u>. Otherwise no overt pain elicited palpation

### 7 yo MN Shiba Inu

What kind of weakness? Neurologic or orthopedic?

### **NEUROLOGIC**

- Neurolocalization: C6-T2 myelopathy

### Less likely to be concurrent neurologic + orthopedic...

- T3-L3 myelopathy + forelimb lameness (elbow, biceps brachii)

### 7 yo MN Shiba Inu

Differentials?

#### **ORTHOPEDIC**

- Elbow dysplasia
- Biceps brachii tenosynovitis

#### **NEUROLOGIC**

- Intervertebral disc protrusion
- Caudal cervical spondylomyelopathy
- Neoplasia



"Wobbler's syndrome"

- Disc-associated
- Middle-aged large breed dogs
  - Doberman
- Disc protrusion +/- ligamentous hypertrophy & congenital vertebral canal stenosis
- Most common at C5-C6 & C6-C7
- ~50% dogs can have multiple sites of compression
- Osseous-associated



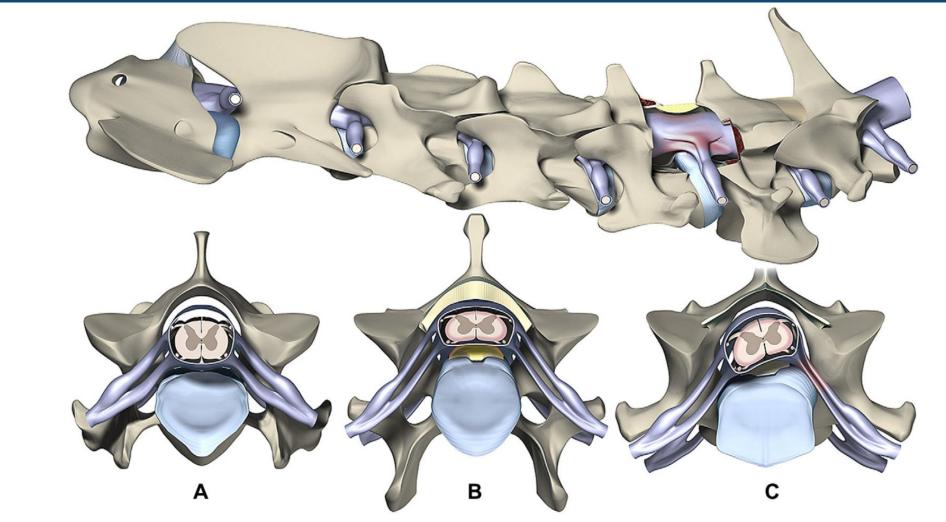



Fig. 1. Disc-associated CSM. (*Top*) Ventral spinal cord compression and nerve root compression at C5-6 caused by intervertebral disc protrusion. Dorsally, hypertrophy of the ligamentum flavum causes mild spinal cord compression. (*Bottom*) (*A*) Transverse section at the level of the C4-5 disc region showing normal spinal cord and vertebral canal. (*B*) Ventral compression at C5-6 region caused by intervertebral disc protrusion and hypertrophy of the dorsal longitudinal ligament (*yellow*) and ligamentum flavum (causing mild dorsal compression). (*C*) Asymmetric intervertebral disc protrusion at C6-7 causing spinal cord and nerve root compressions. (*Courtesy of* The Ohio State University; with permission.)

a RC, VCNA 2010

"Wobbler's syndrome"

- Disc-associated
- Middle-aged large breed dogs
  - Doberman
- Disc protrusion +/- ligamentous hypertrophy & congenital vertebral canal stenosis
- Most common at C5-C6 & C6-C7
- ~50% dogs can have multiple sites of compression
- Osseous-associated

- Young giant breed dogs
- Osseous proliferation of dorsolateral components of the vertebral canal
  - Vertebral malformations
  - Osteoarthritic changes
- ~80% dogs can have multiple sitesof compression

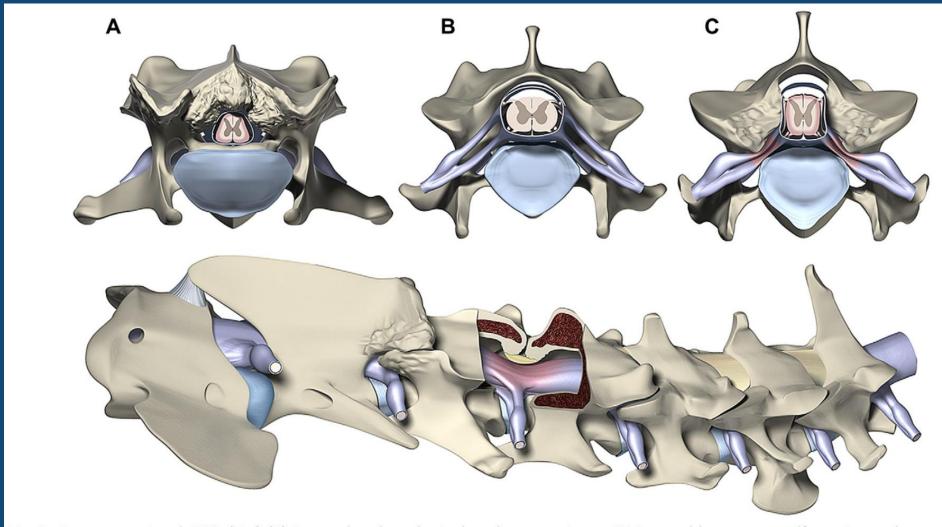
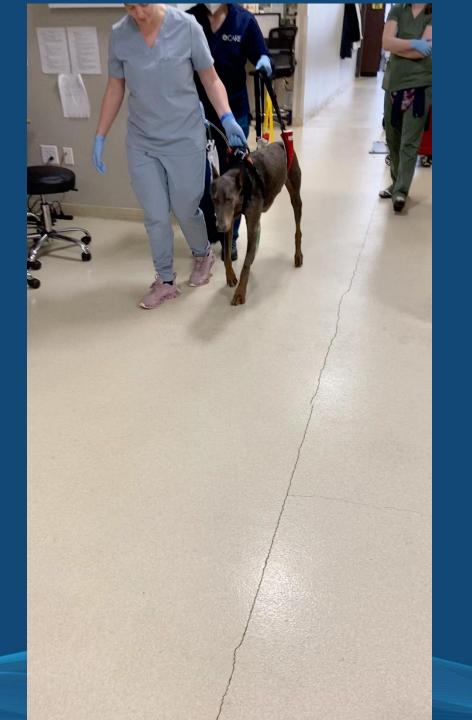



Fig. 2. Osseous-associated CSM. (*Top*) (A) Severe dorsolateral spinal cord compression at C2-3 caused by osseous malformation and osteoarthritic changes. (B) Normal C3-4 disc region. (C) Bilateral compression at C4-5 caused by osteoarthritic changes and medial proliferation of the facets causing absolute vertebral canal stenosis and foraminal stenosis, leading to spinal cord and nerve root compressions, respectively. (*Bottom*) Dorsal spinal cord compression at C3-4 caused by lamina malformation and hypertrophy of the ligamentum flavum. Osteoarthritic changes are also shown at C2-3. (*Courtesy of* The Ohio State University; with permission.)

#### Common history:

- Chronic progressive tetraparesis (or paraparesis) & ataxia;
   sometimes acute-on-chronic scenario
- +/- evident cervical pain


#### Exam findings:

- Varying degrees of tetraparesis & GP ataxia
  - Thoracic limbs can be either UMN or LMN quality paresis
  - Pelvic limbs UMN quality paresis
- Often low or stiff head carriage
- Proprioceptive deficits
  - Pelvic limbs +/- thoracic limbs
- +/- withdrawal reflex deficits in thoracic limbs
- Decreased cervical ROM +/- overt cervical pain













- Diagnostics:
  - Spinal radiographs
  - MRI
  - -+/- CT
    - Characterization of osseous malformations
    - Surgical planning
  - Peri-anesthetic & pre-surgical considerations (Doberman)
    - Echocardiogram, ECG
    - vWD genetic test
    - Buccal mucosal bleeding time (BMBT)



- Treatment options:
  - Surgery
    - Ventral slot
    - Decompressive dorsal laminectomy vs. hemilaminectomy
    - Discectomy + distraction / stabilization

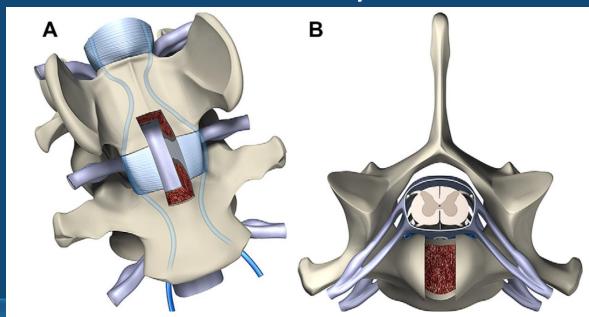
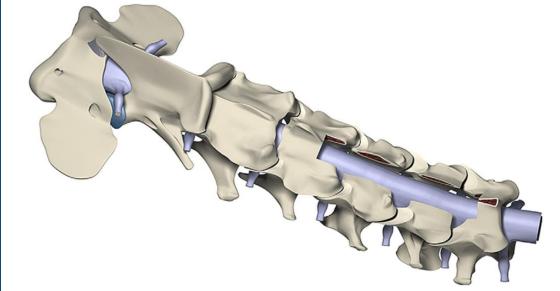
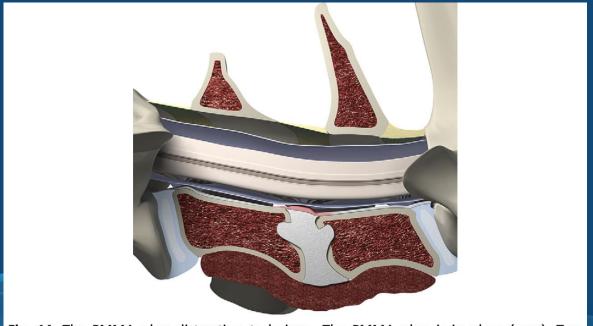





Fig. 10. Ventral slot at C6-7. (A) Ventral view. (B) Transverse view.



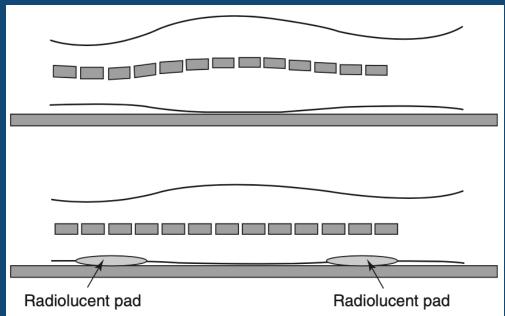
**Fig. 12.** Dorsal laminectomy from C4 to C7. (*Courtesy of* The Ohio State University; with permission.)

- Treatment options:
  - Surgery
    - Ventral slot
    - Decompressive dorsal laminectomy vs. hemilaminectomy
    - Discectomy + distraction / stabilization










- Treatment options:
  - Surgery
    - Ventral slot
    - Decompressive dorsal laminectomy vs. hemilaminectomy
    - Discectomy + distraction / stabilization
  - Medical management
    - Anti-inflammatory steroid trial
    - Strict rest
      - Especially minimize impact to thoracic limbs (e.g. jumping out of car or down from furniture)
    - Physical therapy

# 7 yo MN Shiba Inu

- Diagnostics
  - Spinal radiographs (cervical, thoracolumbar)





**Fig. 7-20** Diagram illustrating the use of nonradiopaque pads for lateral spinal radiographs. Elevation of dependent portions of the vertebral column leads to improved vertebral alignment. The perspective of the image is as if the viewer is looking at the dorsal aspect of a dog while it is lying on the x-ray table. In the *top panel*, the dog is allowed to lie unrestrained on the table. The natural curve of the body will result in the vertebrae not being aligned in one plane. In this instance, the varying relation of the vertebrae with the primary x-ray beam will lead to distortion. In the *bottom panel*, dependent (sagging) portions of the vertebrae are elevated with nonradiopaque pads, which results in all vertebrae being more aligned in a plane parallel with the top of the x-ray table. This maneuver will lead to a less distorted lateral projection of the vertebrae. (Reprinted with permission from Thrall DE, Robertson ID: *Atlas of normal radiographic anatomy and anatomic variants in the dog and cat*, St Louis, 2011, Elsevier-Saunders.)

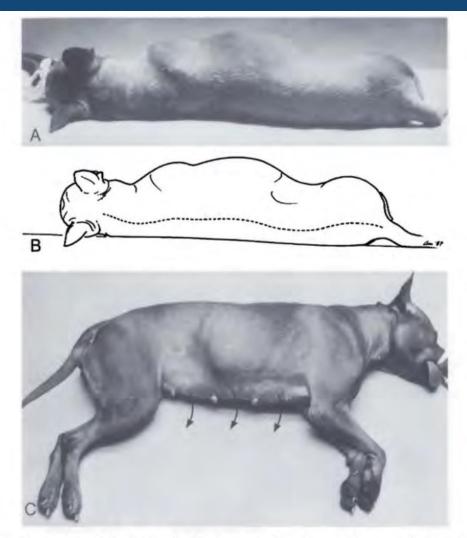



Figure 5. A view of the back of a dog lying in lateral recumbency (A) demonstrates the scoliotic position (B) the spinal column assumes if padding is not used to keep the entire spine parallel to the tabletop. If padding is not placed under the sternum and between the limbs, axial rotation occurs as the sternum and upper limbs roll down toward the tabletop (C).

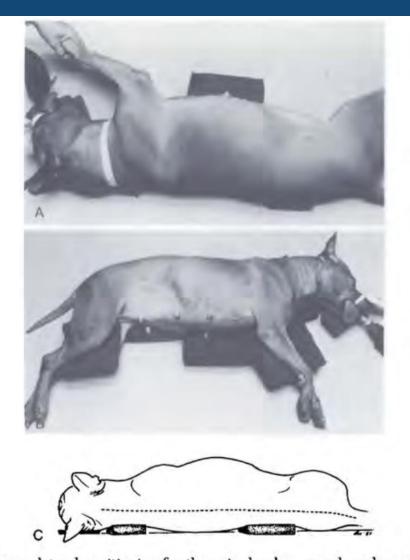
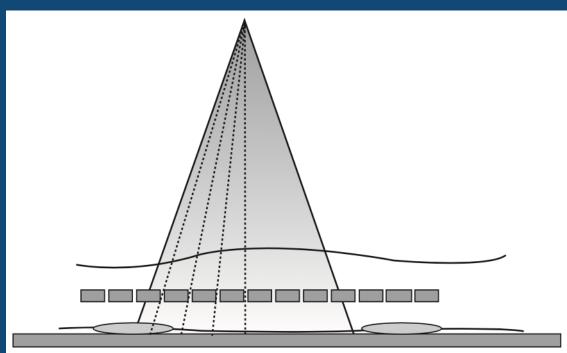
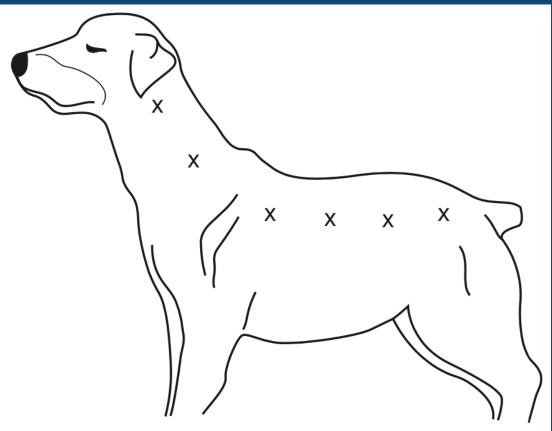
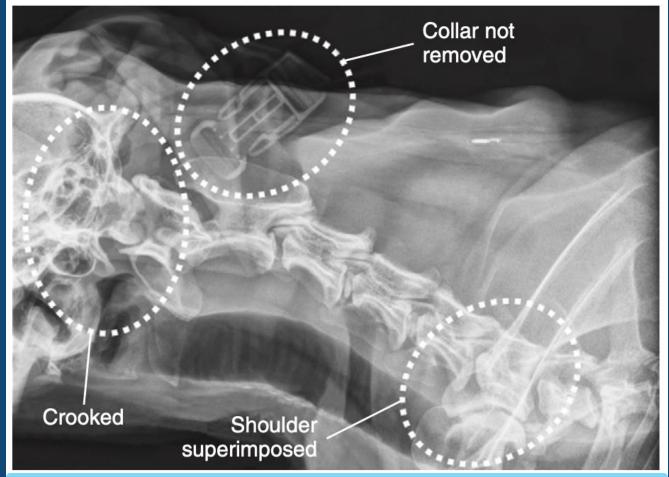





Figure 8. Proper lateral positioning for thoracic, lumbar, sacral, and coccygeal vertebrae requires foam padding to prevent scoliotic sagging and axial rotation (A, B, and C). The cervical spine should also be supported to maintain proper positioning of the upper thoracic vertebrae.




**Fig. 7-21** Diagram illustrating the effect of divergence of the x-ray beam on disk-space width. The *gray triangle* represents the diverging x-ray beam. The *dotted lines* represent x-ray photons that will strike four adjacent intervertebral disk spaces. The vertical photon will pass through the central disk space, and the image will be representative of the actual size of the disk space. As one proceeds further peripherally from this central photon to the reader's left, the relationship of the photon with the disk space becomes less aligned, and this will lead to an image of the disk space that is narrower than its actual width and not representative of the true size of the disk space. (Reprinted with permission from Thrall DE, Robertson ID: *Atlas of normal radiographic anatomy and anatomic variants in the dog and cat*, St Louis, 2011, Elsevier-Saunders.)



**Fig. 7-22** Illustration of the centering points, designated by X, needed to obtain a lateral survey radiographic study of the entire spine. Lateral views centered approximately at C2, C7, T4, T13, L3, and L7 will be needed to obtain radiographs that depict spinal anatomy throughout the length of the spine without distortion. In very small subjects this number of projections may be reduced proportionally, but in medium or large subjects this number of views will be needed. The same centering points should be used for VD survey radiographs.

- Get sternum & spine in the same plane using foam pads/blocks (radiolucent material)
  - Usually via lifting the sternum; in some patients with rounded thorax, may require displacing sternum toward the table
- Use foam pads/blocks to eliminate sagging or undulation of the spine parallel to the table
  - Usually via lifting immediately cranially to the shoulders and immediately cranially to the hips
- Take a series with different centering points to reduce distortion at the image periphery – both lateral & VD
  - Cranial cervical pull legs back
  - Caudal cervical *pull legs forward*
  - Thoracic
  - Thoracolumbar junction
  - Lumbar
  - Lumbosacral junction

If a spinal trauma suspect – **skip the VD** 



**Fig. 7-18** A poorly positioned cervical radiograph that is totally useless. The patient is crooked, the collar has not been removed, and a shoulder is superimposed on the caudal aspect of the cervical spine. This is a careless approach that wastes time and needlessly increases personnel radiation exposure. The patient and owner deserve higher-quality work.



### 7 yo MN Shiba Inu

### Diagnostics

- Spinal radiographs (cervical, thoracolumbar)
- Cervical spine MRI

#### Treatment

- Surgery discectomy + spinal stabilization
- Medical management anti-inflammatory prednisone, analgesics





# Case 5

Case Studies

- History: 6 month history of progressive hind limb weakness, significantly more progressive over past 2 months.
  - Has progressed from stumbling in hind end to needing full support with Help'EmUp harness
  - A couple weeks ago, became acutely weak in the right forelimb and mobility was further impacted
  - Diagnosed with hip dysplasia at 1 year of age via radiographs





#### Ortho Exam Findings:

- Gait: Bilateral weightbearing pelvic limb lameness with support, grade 2 right thoracic limb lameness
- Right thoracic limb: <u>Significant thickening of elbow with decreased flexion</u>; no other
  joint pain, effusion, instability, or altered range of motion identified in any joint; long
  bones palpate normally; no biceps pain on direct palpation
- Left thoracic limb: No joint pain, effusion, instability, or altered range of motion identified in any joint; long bones palpate normally; no biceps pain on direct palpation
- Right pelvic limb: <u>Decreased hip extension with creptius/discomfort on ROM</u>; no stifle effusion or instability; tarsus, digits, and long bones palpate normally
- Left pelvic limb: <u>Positive cranial drawer & tibial thrust, crepitus on ROM</u>; <u>decreased hip extension with creptius/discomfort on ROM</u>; tarsus, digits, and long bones palpate normally

- Neuro Exam Findings:
- Gait/posture:
  - Non-ambulatory paraparetic (vs. tri- / tetraparetic) with GP ataxia in pelvic limbs - good motor function in pelvic limbs (right worse than left), advancing both with every step.
  - At times appears lame in right thoracic limb right thoracic limb (equivocally left thoracic limb as well) has appearance of spastic paresis with GP ataxia; also infrequently knuckles in right thoracic limb
- Postural reactions: paw placement absent in pelvic limbs and delayed in right thoracic limb, hopping delayed to absent in pelvic limbs and normal in thoracic limbs
- Segmental reflexes/muscle tone: normal tone in pelvic limbs, spastic tone in right thoracic limb. Withdrawal reflex apparently normal in all limbs. Cross extensor reflex present with stimulation of both pelvic limbs. Patellar reflex intact x 2. CT reflex normal.
- Spinal hyperesthesia: no overt pain elicited on palpation of vertebral column

What kind of weakness? Neurologic or orthopedic?

### **BOTH**

- Known orthopedic disease, likely concurrent/additive paresis

### **ORTHOPEDIC**

- Right forelimb lameness elbow
- Bilateral hindlimb lameness hips, iliopsoas, stifles

### **NEUROLOGIC**

Neurolocalization: C1-T2 myelopathy (R>L) +/- concurrent T3-L3-myelopathy

#### Differentials?

#### **ORTHOPEDIC**

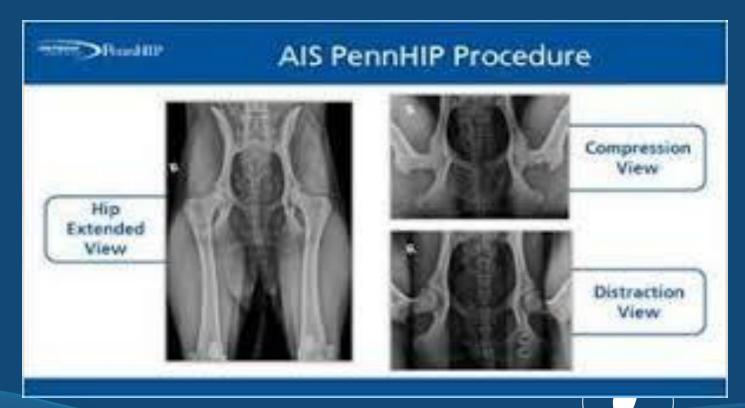
- Hip dysplasia + secondary osteoarthritis
- Cranial cruciate ligament disease
- Iliopsoas injury
- Immune-mediated polyarthropathy
- Infectious arthropathy
- Neoplasia

#### **NEUROLOGIC**

- Intervertebral disc protrusion
- Degenerative myelopathy
- Caudal cervical spondylomyelopathy
- Neoplasia



#### Common history:


- Bunny-hopping as a puppy, progressing to stiffness after rest, exercise intolerance
- Less willing to jump up or climb stairs
- Improves with rest/NSAIDs
- Rarely associated with acute lameness/progression

#### Exam findings:

- Decreased hip extension & abduction
- Positive Ortolani test
- Crepitus on ROM
- Tarsal hyperextension
- Concurrent iliopsoas strain in advanced cases



- Diagnostics:
  - VD pelvis radiograph
    - OFA vs PennHip
  - Pelvic CT scan













### Treatment Options:

- Conservative Management
- Juvenile Pubic Symphysiodesis (12-20 wks)
- Triple or Double Pelvic Osteotomy (<12-14 months)</li>
- Total Hip Replacement
- Femoral Head/Neck Ostectomy



### **Iliopsoas Strain**

#### Common history:

- Primary: Acute onset of lameness, often after high-intensity activity
- Secondary: Concurrent cause of pelvic limb lameness
- May improve somewhat with rest, often minimal response to NSAIDs

#### Exam findings:

- Pain on direct palpation of iliopsoas tendon insertion on lesser trochanter or muscle mid-body
- Pain on hip extension with concurrent internal rotation
- Decreased hip excursion during gait
- Mild external rotation of pelvic limb during stance phase
- Concurrent source of pelvic limb lameness



## Iliopsoas Strain

### Diagnostics:

- Ultrasound
- MRI

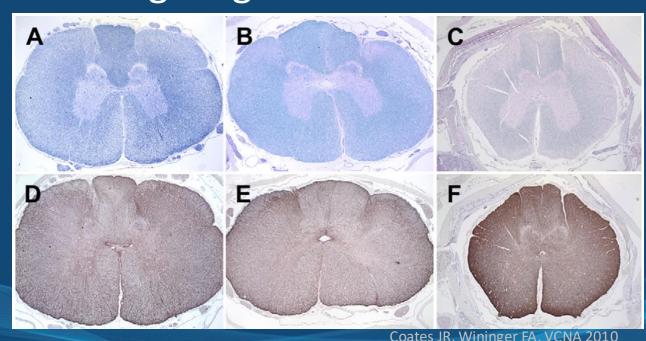
### Treatment Options:


- Treat primary source of lameness if present
- Conservative management
- Orthobiologics?
- Tenectomy














# **Degenerative Myelopathy**

- Multisystem central & peripheral axonopathy
  - Degeneration of the axons of neurons in the spinal cord, then nerves
- Superoxide dismutase 1 (SOD-1) protein mutation
- Middle-older age of onset of neurologic signs
  - Typically >8 years
- Breed predilections:
  - German Shepherd
  - Boxer
  - Pembroke Welsh Corgi
  - Chesapeake Bay Retriever
  - Rhodesian Ridgeback
  - (but can affect many breeds)



# **Degenerative Myelopathy**

### Common history:

- Scuffing / dragging of toes in pelvic limbs progressively worse over several months
- Slow / insidious onset, progressive paraparesis & ataxia
- Can't jump like they used to
- No evident pain

### Exam findings:

- Variable severity paraparesis & ataxia
  - Starts as UMN paraparesis & GP ataxia (T3-L3 myelopathy)
  - Later stages: LMN paraparesis (L4-Cd myelopathy) → flaccid paraplegia to tetraplegia
- Often asymmetry of signs
- +/- hyporeflexia of pelvic limbs
- Loss of appendicular muscle mass (disuse + denervation atrophy)
- Lack of spinal pain



# **Degenerative Myelopathy**

### Diagnostics:

- Diagnosis of exclusion
- SOD-1 genetic test
  - Homozygous mutation = "at risk"
  - Heterozygous = DM carrier; unlikely to develop clinical disease
  - Homozygous normal = unlikely to develop DM
- MRI
- CSF analysis

### Treatment options:

- No definitive therapies
- Physiotherapy



- Age-related degeneration of the intervertebral disc – increased collagenization of the nucleus pulposus, weakening of the annulus fibrosus
- Weakening & micro-tears of the annulus fibrosus allow for focal bulging of the annulus & nucleus into the vertebral canal
  - Hansen type II



- More commonly occurs in non-chondrodystrophic breeds
- Typically >7 years old

### Common history:

- Typically older age of onset
- Slow onset, progressive paraparesis (or tetraparesis) & ataxia; sometimes acute-on-chronic scenario
- -+/- evident pain

### Exam findings:

- Varying degrees of paraparesis (tetraparesis) & GP ataxia, to paraplegia (tetraplegia)
- Proprioceptive deficits
- +/- Spinal reflex deficits
- -+/- Spinal pain



- Diagnostics
  - Spinal radiographs?
  - MRI
    - Or CT/myelogram
- Treatment options
  - Decompressive surgery
    - Hemilaminectomy
    - Mini-hemilaminectomy + corpectomy
    - Ventral slot
  - Medical management anti-inflammatory, analgesics
    - CRATE REST
      - 23 hours/day, short leashed walks for urination/defecation



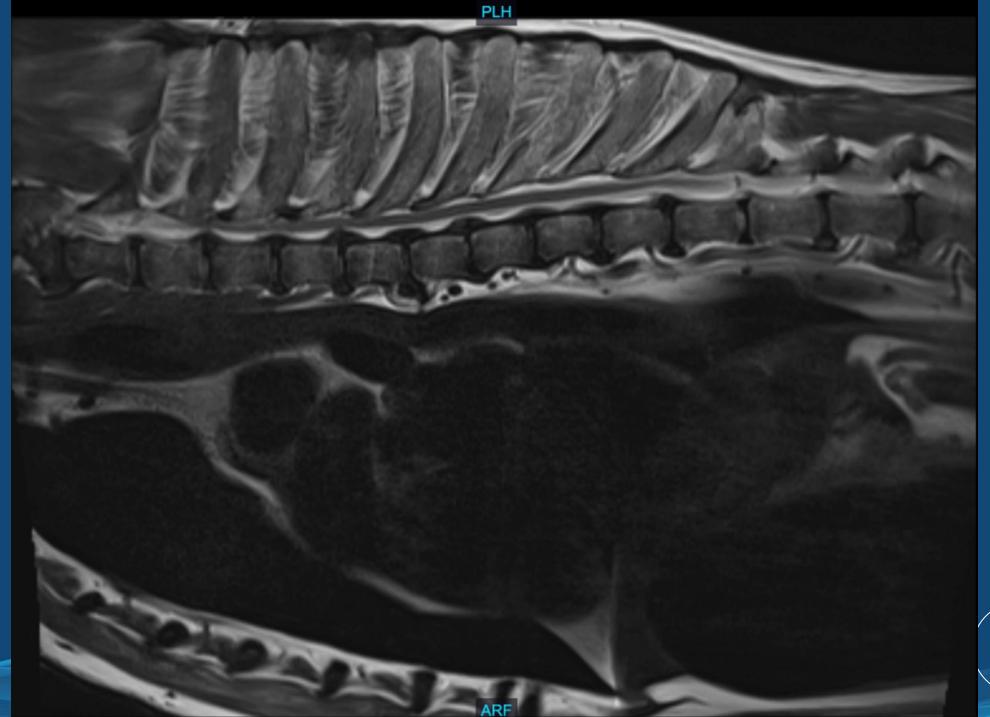
# 10 yo M German Shepherd

### Diagnostics

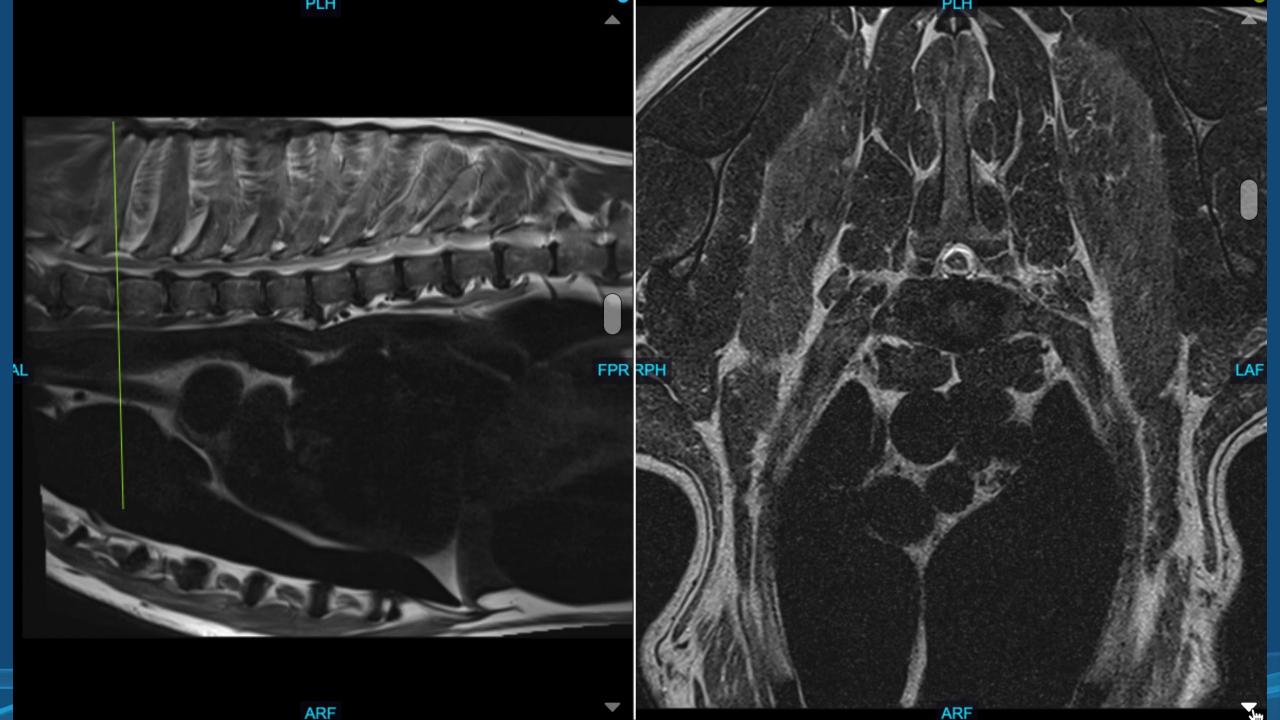
Radiographs (stifles, pelvis/hips)

#### Treatment

- +/- Left TPLO
- +/- THR vs. FHO







# 10 yo M German Shepherd

- Diagnostics
  - Spinal radiographs (cervical, thoracolumbar)
  - Cervical + thoracolumbar spine MRI









# 10 yo M German Shepherd

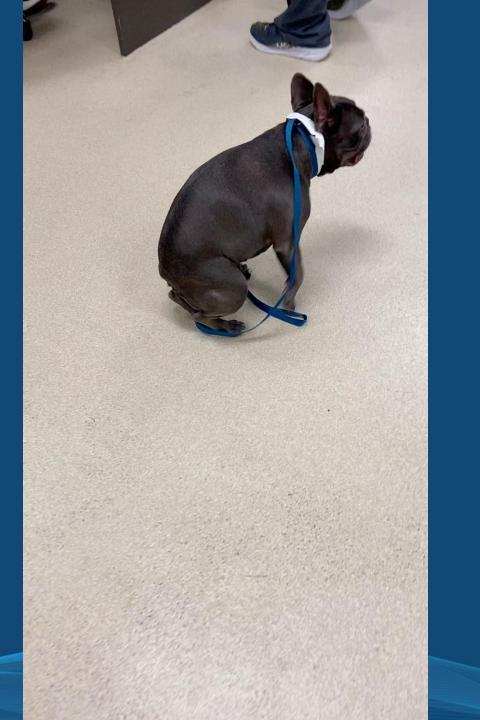
### Diagnostics

- Spinal radiographs (cervical, thoracolumbar)
- Cervical + thoracolumbar spine MRI

#### Treatment

- Surgery decompressive hemilaminectomy
- Medical management anti-inflammatory prednisone, analgesics




# Case 6

Case Studies

History: acutely weak in hind limbs, cannot stand

- Started showing signs of discomfort 2 days ago more sedentary at home, reluctant to go for walks. Did not want to eat her dinner last night
- This morning became suddenly unable to walk or stand; has been crouched in hind end









### Ortho Exam Findings:

- Gait: Hunched stance in pelvic limbs, incomplete hip/stifle extension
- Thoracic limbs: No joint pain, effusion, instability, or altered range of motion identified in any joint; long bones palpate normally
- Pelvic limbs: No stifle effusion or instability, comfortable on full ROM; no patellar luxation elicited bilaterally; hip, tarsus, digits, and long bones palpate normally; no overt iliopsoas pain on direct palpation



- Neuro Exam findings:
  - Mentation: Bright, alert, responsive
  - Gait/posture: borderline ambulatory with apparent LMN weakness (vs. orthopedic weakness) in both pelvic limbs; has good motor function in both pelvic limbs but is unable to extend stifles. Has a crouched posture at all times in the pelvic limbs
  - Cranial nerves: normal
  - Postural reactions: absent paw placement & delayed hopping in both pelvic limbs
  - Segmental reflexes/muscle tone: <u>absent patellar x 2</u>, apparently normal withdrawal x 4 (difficult to assess due to tucked posture of pelvic limbs), normal CT reflex, normal perineal reflex
  - Spinal hyperesthesia: moderate pain on palpation in mid-lumbar region

What kind of weakness? Neurologic or orthopedic?

### **NEUROLOGIC**

- Neurolocalization: L4-S3 myelopathy
  - vs. less likely partial manifestation of diffuse neuromuscular disease (due to presence of back pain)

Less likely to be bilateral orthopedic in a Frenchie with back pain...

- Bilateral hindlimb lameness (patellas, stifles)



#### Differentials?

- Intervertebral disc extrusion
- Intervertebral disc extrusion
- Intervertebral disc extrusion
- Meningomyelitis
- Neoplasia
- Consider the following with this gait abnormality if <u>no</u> evidence of back pain:
  - Myasthenia gravis
  - Bilateral cranial cruciate ligament disease
  - Bilateral high-grade medial patellar luxations



 Degenerative changes to the intervertebral disc (chondroid metaplasia) → loss of hydroelastic properties, decreased ability to withstand pressure

 Extrusion of nucleus pulposus material through the ruptured annulus fibrosus

Hansen type I



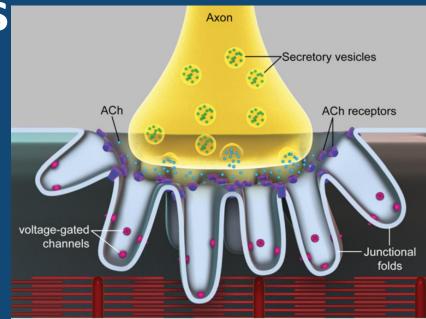


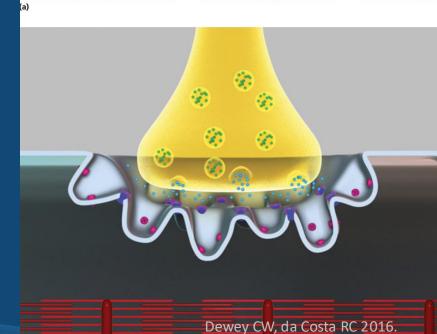
### Common history:

- Acutely having difficulty walking, or completely unable to walk
- +/- preceding signs of discomfort of variable duration
- May have jumped off a couch or bed, or suffered a different forceful impact to the spine
- May exhibit signs of pain only
  - Restlessness, pacing, freezing and not wanting to move, unable to sit/lay down, kyphotic posture, reluctance to bend down to food bowl, inappetence, withdrawn behaviors

### Exam findings:

- Varying degrees of paraparesis (or tetraparesis) & GP ataxia, to paraplegia (tetraplegia)
  - Sometimes ambulatory with <u>no</u> overt paraparesis or ataxia – may be painful only
- Proprioceptive deficits
- -+/- Spinal reflex deficits
- -+/- diminished to absent nociception
- Often focal spinal pain
  - Sometimes no overt focal pain





- Diagnostics
  - Spinal radiographs?
  - MRI
    - Or CT vs. CT/myelogram
- Treatment options
  - Decompressive surgery
    - Hemilaminectomy
    - Mini-hemilaminectomy
    - Ventral slot
    - Dorsal laminectomy
  - Medical management anti-inflammatory, analgesics
    - CRATE REST
      - 23 hours/day, short leashed walks for urination/defecation



- Acquired form immune-mediated disease
  - Auto-antibodies against nicotinic acetylcholine (ACh) receptors on skeletal muscle membrane
- Decreased availability of ACh-receptors at the neuromuscular junction 

   decreased neuromuscular transmission
- Bi-modal age of onset
  - Dogs: <4 years, > 9 years
  - Cats: 2-3 years, 9-10 years





### Common history:

- Exercise-induced episodic fatigue
  - Short-strided gait progressing to crouched posture, possibly collapse
  - Often affects pelvic limbs first, then thoracic limbs
- +/- Hypersalivation, regurgitation, dysphagia, dysphonia

### Exam findings:

- Often normal if in a rested state
- Fatigable palpebral reflex
- After exercise: episodic LMN quality paresis, often of all limbs











- Diagnostics:
  - CBC/chemistry/UA
  - Thyroid panel
  - Baseline cortisol
  - Thoracic radiographs
  - Abdominal imaging
  - Acetylcholine-receptor antibody titer (ACh-R Ab titer)
  - Electrodiagnostics (repetitive nerve stimulation, singlefiber electromyography)

- Treatment options:
  - Anti-cholinesterase drugs
    - Make more ACh available at the NMJ for binding to the ACh-R that are available
    - Pyridostigmine bromide PO
    - Neostigmine IV
  - +/- Immunosuppressive therapy
  - Supportive care
    - Elevated feedings
    - Esophageal prokinetic medications, proton pump inhibitors
    - Monitoring for aspiration pneumonia



### **Patellar Luxation**

#### Common history:

- Gait abnormality generally non-progressive but present from young age
- No history of trauma
- No significant improvement with rest/NSAIDs

### • Exam findings:

- Skipping gait when walking/trotting to consistent bowlegged gait
- Inducible patellar instability
- Minimal to mild stifle effusion
- +/- Cranial cruciate ligament instability

#### **GRADE I**

Knee cap can be manipulated out of its groove, but returns to its normal position spontaneously

#### GRADE II

Knee cap rides out of its groove occasionally and can be replaced in the groove by manipulation

#### **GRADE III**

Knee cap rides out of its groove most of the time but can be replaced in the groove via manipulation

#### **GRADE IV**

Knee cap rides out of its groove all the time and cannot be replaced inside the groove




# **Patellar Luxation**

### Diagnostics:

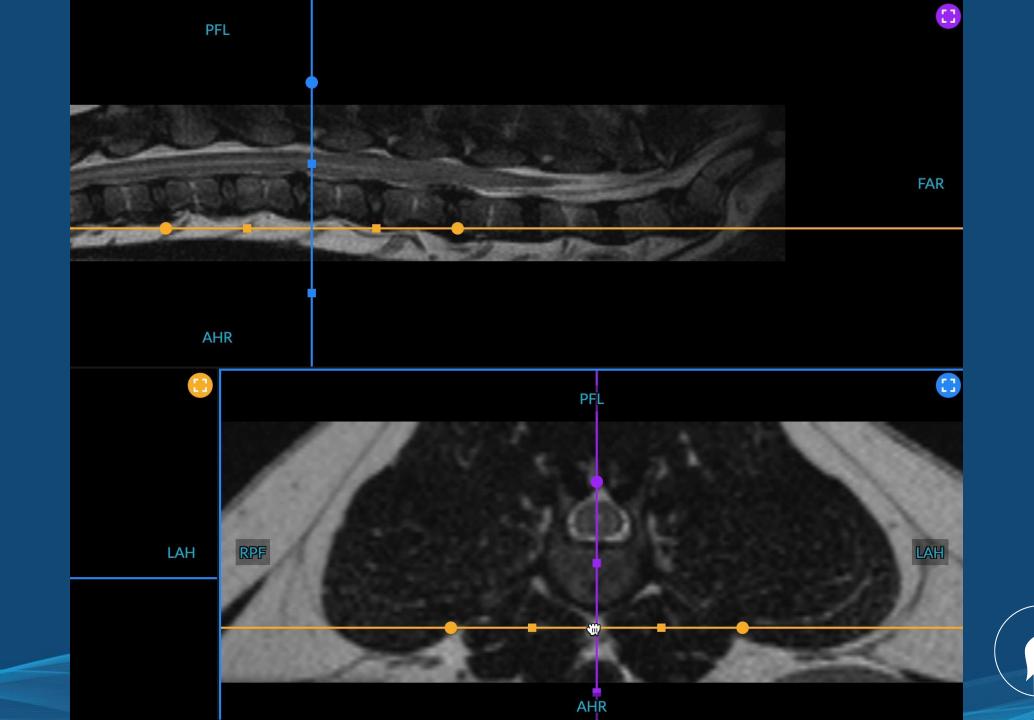
- Orthogonal radiographs from pelvis to tarsus
- CT scan












- Tibial tuberosity transposition
- Anti-rotational lateral fabellar suture
- Distal femoral osteotomy
- Soft tissue adjustments



- Diagnostics
  - Spinal radiographs?
  - Thoracolumbar spine MRI





- Diagnostics
  - Spinal radiographs?
  - Thoracolumbar spine MRI

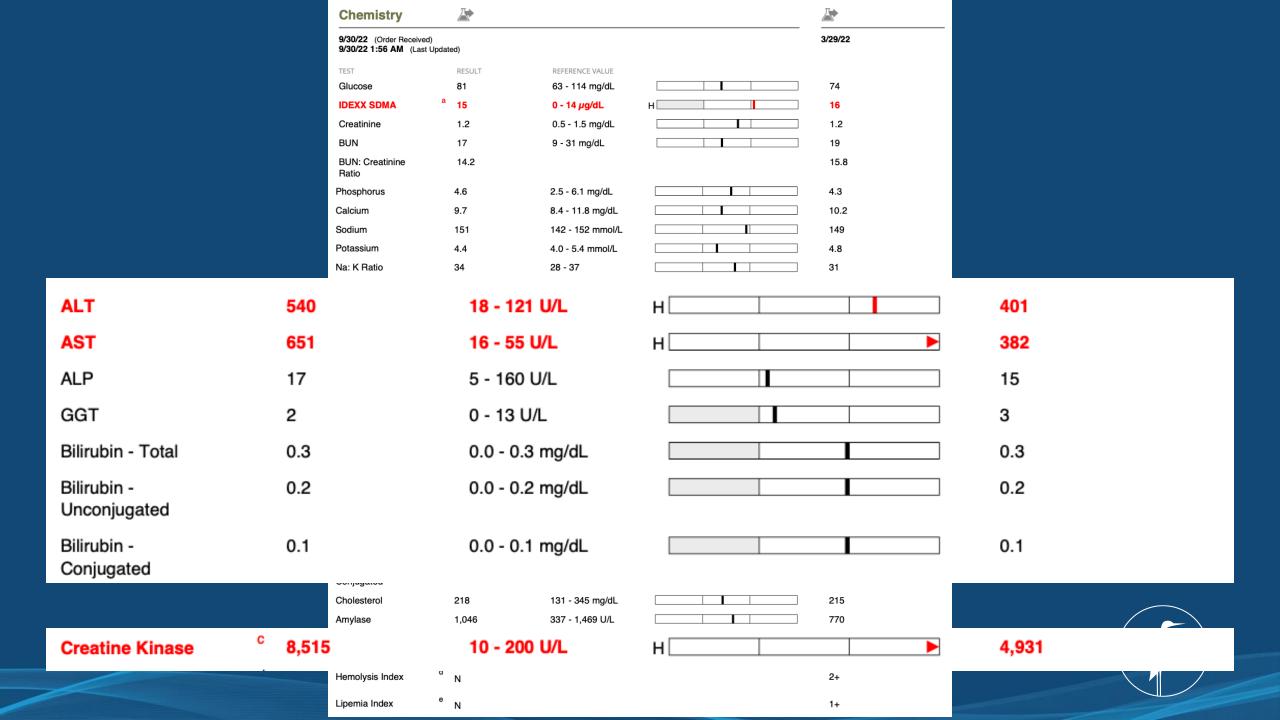
- Treatment
  - Surgery decompressive hemilaminectomy
  - Medical management anti-inflammatory, analgesics
    - CRATE REST
      - 23 hours/day, short leashed walks for urination/defecation





# Case 7

Case Studies


History: progressive weakness in all four limbs

• 6 months prior, was noted to have elevated liver enzymes (ALT, ALP) on bloodwork. Recheck bloodwork this month showed progressively increased liver enzymes and CK



| Chemistry                                                          |   | ₩      |                  |   |       |  |
|--------------------------------------------------------------------|---|--------|------------------|---|-------|--|
| 9/30/22 (Order Received) 3/29/22<br>9/30/22 1:56 AM (Last Updated) |   |        |                  |   |       |  |
| TEST                                                               |   | RESULT | REFERENCE VALUE  |   |       |  |
| Glucose                                                            |   | 81     | 63 - 114 mg/dL   |   | 74    |  |
| IDEXX SDMA                                                         | a | 15     | 0 - 14 μg/dL     | H | 16    |  |
| Creatinine                                                         |   | 1.2    | 0.5 - 1.5 mg/dL  |   | 1.2   |  |
| BUN                                                                |   | 17     | 9 - 31 mg/dL     |   | 19    |  |
| BUN: Creatinine<br>Ratio                                           |   | 14.2   |                  |   | 15.8  |  |
| Phosphorus                                                         |   | 4.6    | 2.5 - 6.1 mg/dL  |   | 4.3   |  |
| Calcium                                                            |   | 9.7    | 8.4 - 11.8 mg/dL |   | 10.2  |  |
| Sodium                                                             |   | 151    | 142 - 152 mmol/L |   | 149   |  |
| Potassium                                                          |   | 4.4    | 4.0 - 5.4 mmol/L |   | 4.8   |  |
| Na: K Ratio                                                        |   | 34     | 28 - 37          |   | 31    |  |
| Chloride                                                           |   | 115    | 108 - 119 mmol/L |   | 114   |  |
| TCO2<br>(Bicarbonate)                                              |   | 22     | 13 - 27 mmol/L   |   | 24    |  |
| Anion Gap                                                          |   | 18     | 11 - 26 mmol/L   |   | 16    |  |
| Total Protein                                                      |   | 7.0    | 5.5 - 7.5 g/dL   |   | 6.7   |  |
| Albumin                                                            |   | 3.3    | 2.7 - 3.9 g/dL   |   | 3.2   |  |
| Globulin                                                           |   | 3.7    | 2.4 - 4.0 g/dL   |   | 3.5   |  |
| Albumin:<br>Globulin Ratio                                         |   | 0.9    | 0.7 - 1.5        |   | 0.9   |  |
| ALT                                                                |   | 540    | 18 - 121 U/L     | H | 401   |  |
| AST                                                                |   | 651    | 16 - 55 U/L      | H | 382   |  |
| ALP                                                                |   | 17     | 5 - 160 U/L      |   | 15    |  |
| GGT                                                                |   | 2      | 0 - 13 U/L       |   | 3     |  |
| Bilirubin - Total                                                  |   | 0.3    | 0.0 - 0.3 mg/dL  |   | 0.3   |  |
| Bilirubin -<br>Unconjugated                                        |   | 0.2    | 0.0 - 0.2 mg/dL  |   | 0.2   |  |
| Bilirubin -<br>Conjugated                                          |   | 0.1    | 0.0 - 0.1 mg/dL  |   | 0.1   |  |
| Cholesterol                                                        |   | 218    | 131 - 345 mg/dL  |   | 215   |  |
| Amylase                                                            |   | 1,046  | 337 - 1,469 U/L  |   | 770   |  |
| Lipase                                                             | b | 74     | 0 - 250 U/L      |   | 53    |  |
| Creatine Kinase                                                    | С | 8,515  | 10 - 200 U/L     | н | 4,931 |  |
| Hemolysis Index                                                    | d | N      |                  |   | 2+    |  |
| Lipemia Index                                                      | е | N      |                  |   | 1+    |  |





- History: progressive weakness in all four limbs
  - 6 months prior, was noted to have elevated liver enzymes (ALT, ALP) on bloodwork. Recheck bloodwork this month showed progressively increased liver enzymes and CK
  - Started on denamarin, prednisone (0.8 mg/kg/day), and amoxicillin due to suspicion of hepatopathy. Five days later, became weak on walks and progressed over a couple days to a non-ambulatory state, needing assistance for walks
  - Weight loss
- On presentation through Emergency service & during first 24 hours hospitalization, was febrile at 104.2°F (40.1°C)







### Ortho Exam Findings:

- Gait: <u>Hunched stance in pelvic limbs</u>, <u>incomplete hip/stifle</u>
   <u>extension</u>, <u>significantly shortened swing phase bilaterally</u>
- Thoracic limbs: No joint pain, effusion, instability, or altered range of motion identified in any joint; long bones palpate normally
- Pelvic limbs: No stifle effusion or instability, comfortable on full ROM; normal hip range of motion; no patellar luxation elicited bilaterally; tarsus, digits, and long bones palpate normally; no overt iliopsoas pain on direct palpation



- Neuro Exam findings:
  - Mentation: Quiet, alert, responsive
  - Gait/posture: weakly ambulatory tetraparetic, short-strided gait x 4, crouched posture in pelvic limbs due to inability to fully extend stifles
  - Cranial nerves: normal
  - Postural reactions: normal paw placement & hopping in all four when weight is supported
  - Segmental reflexes/muscle tone: normal to slightly diminished muscle tone & mild muscle atrophy x 4, decreased patellar x 2, decreased withdrawal x 4
  - Spinal hyperesthesia: no spinal pain elicited; seems generally uncomfortable for handling

What kind of weakness? Neurologic or orthopedic?

# EITHER IS POSSIBLE NEUROLOGIC

- Neurolocalization: Diffuse neuromuscular (diffuse LMN)

#### **MULTIFOCAL ORTHOPEDIC**

- Lameness in all four limbs – hips, stifles, iliopsoas, elbows, shoulders



#### Differentials?

#### **MULTIFOCAL ORTHOPEDIC**

- Immune-mediated polyarthropathy
- Bilateral hip luxation
- Bilateral cranial cruciate ligament disease
- Bilateral high-grade patellar luxation
- Bilateral hip dysplasia
- Bilateral iliopsoas strains
- Bilateral elbow dysplasia
- Bilateral biceps brachii tenosynovitis

#### paralysis")

- Polyneuropathy
- Myasthenia gravis
- Myopathy
  - Infectious polymyositis
  - Immune-mediated polymyositis
  - Degenerative myopathy

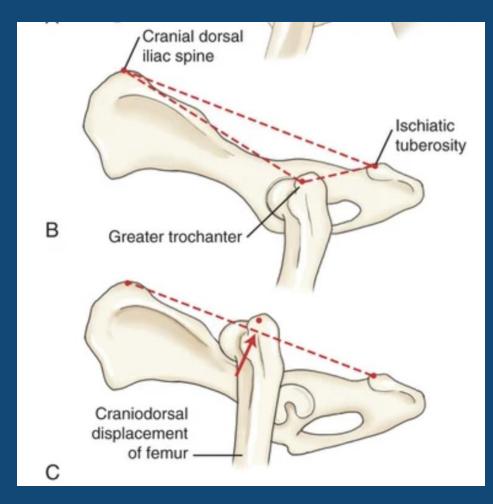


### **Hip Luxation**

### Common history:

- Acute onset of non-weightbearing lameness
- Often has trauma in history, can be minor if underlying severe hip dysplasia
- Does not improve with rest/NSAIDs
- May start toe-touching after several days/weeks

### Exam findings:


- Non-weightbearing to mild toe-touching lameness
- Pain +/- crepitus on ROM
- May have additional trauma



### **Hip Luxation**

#### Exam Findings

- Craniodorsal luxation:
  - Limb shorter than contralateral
  - Dorsal displacement of greater trochanter
- Caudoventral luxation:
  - Limb longer than contralateral
  - Limb often mildly abducted when standing





### **Hip Luxation**

#### Diagnostics:

- Orthogonal pelvic radiographs
- Pelvic CT scan
- Coxofemoral ultrasound







#### Treatment Options:

- Closed reduction
  - Ehmer sling
  - Hobbles
- Open reduction
  - Primary vs synthetic capsulorrhaphy
  - Ileofemoral suture
  - Deep gluteal tendon transposition
  - Toggle-pin fixation
  - Femoral head/neck ostectomy
  - Total Hip Replacement



- Diagnostics
  - CBC/chemistry/UA, CK, thyroid panel



### **Polymyositis**

- Infectious
- Immune-mediated
  - Often idiopathic
  - Breed-associated forms Newfoundlands, Boxers, Hungarian Vizsla
  - Paraneoplastic or pre-neoplastic syndrome
    - Lymphoma
    - Plasmacytoma
  - Middle-aged dogs most common



#### Diagnostics

- CBC/chemistry/UA, CK, thyroid panel
- Thoracic / abdominal imaging (systemic screen)
- Infectious disease testing
  - Toxoplasma, neospora, 4DX
- Electrodiagnostics (electromyography, nerve conduction velocity, repetitive nerve stimulation)
- Muscle (+/- nerve) biopsies



#### Lab Findings

**Bacteriology** 

Cryptococcus antigen LAT - 10/21/2022 11:26 AM

Specimen Cryptococcus antigen

Faye - Spayed - 5 Years

Serum - 1 Not detected

#### Parasitology

Neospora caninum antibody IFA - 10/27/2022 2:10 PM

Specimen Neospora caninum IgG

Faye - Spayed - 5 Years

Serum - 3 >= 1:800

Neospora caninum antibody IFA

*Neospora caninum* IFA: Sample screened at 1:50 which is the lowest detectable titer established by the test manufacturer; thus, titers <1:50 would be considered negative for IgG.

#### Specialized Infectious Disease

Toxoplasma gondii ELISA canine - 10/25/2022 2:06 PM

Specimen IgM IgG

Faye - Spayed - 5 Years

Serum - 2 Negative Negative

Toxoplasma gondii ELISA canine

Detected: (Titer ≥ 1:64): Antibodies against *Toxoplasma gondii* were detected at the reported titer and indicate previous or current infection with the agent. While IgG titers can be present chronically, IgM titers suggest recent infection. If clinical signs indicate possible *T. gondii* infection, treatment is indicated.

Not Detected: (Titer < 1:64): Antibodies against *T. gondii* were not detected in the serum sample provided which indicates lack of exposure or peracute infection.



Lab Director: G. Diane Shelton, DVM, Ph.D. Professor, Department of Pathology musclelab@ucsd.edu http://vetneuromuscular.ucsd.edu

#### BIOPSY REPORT

#### **RE:** Complete Muscle Profile (900)

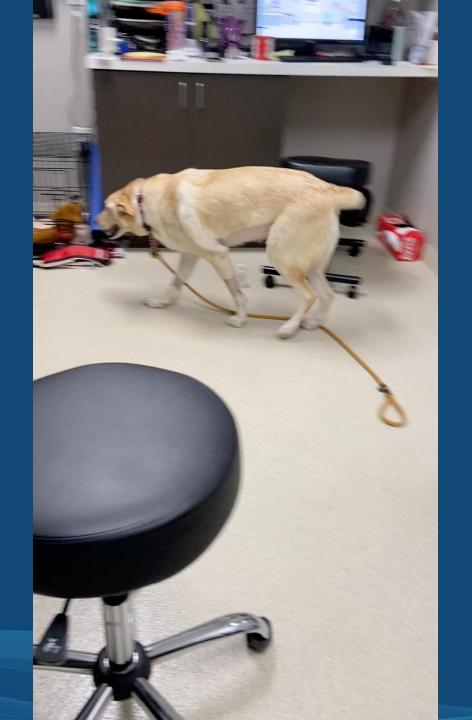
STAINS EMPLOYED: H & E, modified trichrome, PAS, ATPases at pH 9.8 and 4.3, esterase, NADH-TR, acid Pase, alkaline Pase, oil red O, SPA-HRPO

#### **Observation**

Unfixed and fixed biopsies were submitted from the vastus lateralis muscle. The unfixed biopsy was evaluated in frozen sections and the fixed biopsy evaluated in paraffin. A moderate variability in myofiber size was present with scattered atrophic fibers having a round to anguloid shape and of both fiber types. Fiber type grouping was not observed. Intramuscular nerve branches were not present for evaluation. Scattered and multifocal areas of mixed mononuclear cell infiltrations were present with infiltrating cells composed of lymphocytes and acid phosphatase/esterase positive macrophages. Scattered peroxidase-reactive eosinophils were also present in the endomysium and perimysium. Numerous and scattered necrotic myofibers were undergoing phagocytosis. Myofiber loss and fibrosis were present in areas of marked inflammation. No organisms or other specific cytoarchitectural abnormalities were observed.

#### **Conclusion**

Regionally severe inflammatory (myositis) and necrotizing myopathy in the vastus lateralis muscle with patchy fiber loss and fibrosis. If an infectious cause is not identified (Toxoplasma, Neospora or tick-related diseases), an immune-mediated (polymyositis) or paraneoplastic syndrome would be likely.


G. Diane Shelton, D.V.M., Ph.D. Diplomate, ACVIM (Internal Medicine) Professor, Department of Pathology



#### Treatment

- Clindamycin +/- trimethoprim/sulfamethoxazole
- +/- Pyrimethamine
- Anti-inflammatory steroid
- L-carnitine



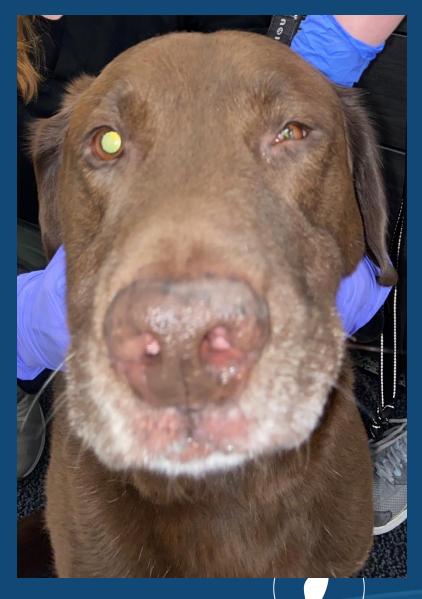




# Case 8

Case Studies

 History: progressive left thoracic limb lameness and left Horner syndrome


- Left eye started looking abnormal about 6 months ago
- Lameness has been progressing over the past 2 months











### Ortho Exam Findings:

- Gait: Grade 2 left thoracic limb lameness
- Right thoracic limb: No joint pain, effusion, instability, or altered range of motion identified in any joint; long bones palpate normally
- Left thoracic limb: No elbow effusion or altered range of motion; no pain on biceps palpation; normal shoulder range of motion; carpus, digits, and long bones palpate normally
- Pelvic limbs: No stifle effusion or instability; normal hip range of motion; no patellar luxation elicited; tarsus, digits, and long bones palpate normally; no overt iliopsoas pain on direct palpation

#### Neuro Exam findings:

- Mentation: bright, alert, responsive
- Gait/posture: ambulatory with left thoracic limb weight-bearing lameness, carpal hyperextension during weight-bearing phase of gait and concurrent ataxia of the left thoracic limb. The left pelvic limb also displays UMN/GP paresis/ataxia, not overtly apparent in right pelvic limb.
- Cranial nerves: ptosis / miosis / elevated nictitans OS, otherwise normal
- Postural reactions: slightly delayed hopping (and intermittently delayed paw placement) in left thoracic limb, otherwise normal
- Segmental reflexes/muscle tone: mild-moderate muscle atrophy of the left antebrachial muscles and only mild atrophy of the left shoulder muscles. Withdrawal reflex is normal in all limbs. Normal patellar reflex x 2. CT reflex is weak on left side when stimulated on both right & left, normal on right.
- Spinal hyperesthesia: No overt pain elicited on palpation of vertebral column.
   Seems consistently hyperesthetic and averse to handling of left thoracic limb



What kind of weakness? Neurologic or orthopedic?

### **NEUROLOGIC**

Neurolocalization: Left C6-T2 myelopathy + Horner syndrome

Less likely to be primary orthopedic with concurrent Horner syndrome...

- Left forelimb lameness: elbow, shoulder, foot



Differentials?

#### **ORTHOPEDIC**

- Elbow dysplasia
- Biceps brachii tenosynovitis
- Foot/digit injury

#### **NEUROLOGIC**

- Neoplasia peripheral nerve sheath tumor, lymphoma
- Lateralized intervertebral disc protrusion
- Meningomyelitis or brachial plexus neuritis



### Elbow Dysplasia/Medial Coronoid Disease

#### Common history:

- Progressive lameness, worse with activity or after rest
- Lameness often first noted after running/high intensity activity
- Improves with NSAIDs and rest
- May involve one or both forelimbs

#### Exam findings:

- Elbow effusion
- Painful and/or decreased range of motion
- Pain on cubital test
- Often bilateral, with one limb affected more severely



### Elbow Dysplasia/Medial Coronoid Disease

#### Diagnostics:

- Orthogonal radiographs including hyperflexed lateral
- Forelimb CT scan
- Arthroscopic evaluation

#### Treatment Options:

- Conservative management
- Arthroscopic debridement/fragment removal
- PAUL
- Canine Uni-compartmental Elbow Resurfacing (CUE)
- Total elbow replacement



### **Biceps Brachii Tenosynovitis**

#### Common history:

- Chronic weightbearing lameness
- Highly active dog
- Generally no history of trauma
- No improvement with NSAIDs

### Exam findings:

- Pain on direct palpation of biceps tendon
- Pain on shoulder flexion with concurrent elbow extension
- Scapular muscle atrophy if chronic
- Concurrent source of lameness may be present



### **Biceps Brachii Tenosynovitis**

### Diagnostics:

- Tendon/shoulder ultrasound
- MRI

### Treatment Options:

- Conservative management
- Orthobiologics?
- Biceps release +/- tenodesis
- Treat underlying primary disease process, if present



### Nerve sheath tumor

#### Common history:

- Progressive monoparesis, sometimes progressing to paraparesis or tetraparesis
- Trigeminal nerve unilateral masticatory muscle atrophy
- May or may not exhibit evident pain



### Nerve sheath tumor

### Exam findings:

- Monoparesis if involving only the nerve/plexus
  - Paraparesis or tetraparesis if extending into the vertebral canal and causing spinal cord compression
- Often GP ataxia & proprioceptive deficits
- Diminished to absent spinal reflexes of the affected limb
- Diminished to absent cutaneous trunci reflex (brachial plexus)
- Horner syndrome (brachial plexus)
- Hyperesthesia



# Cutaneous trunci reflex pathway

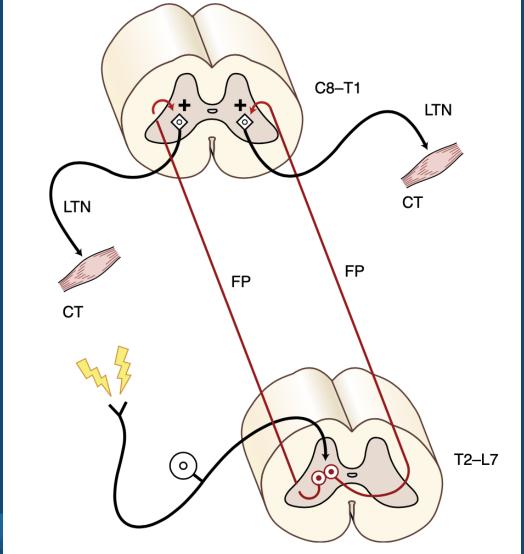
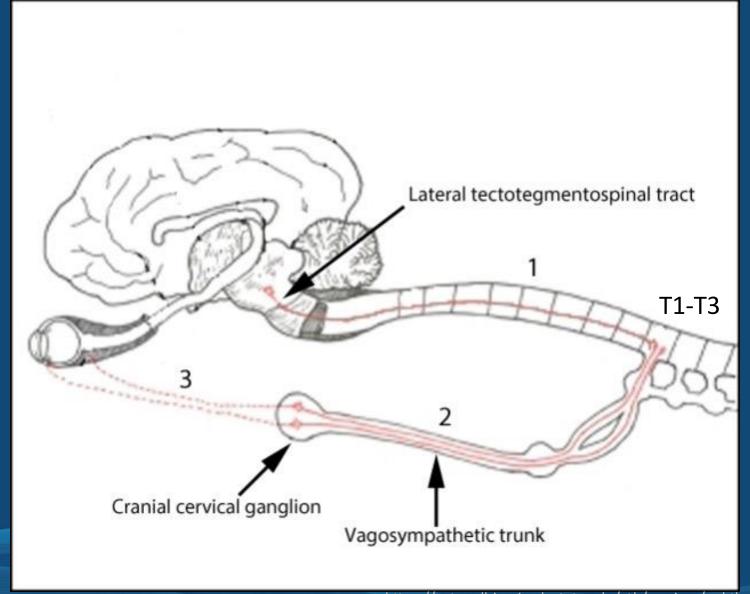




Fig. 5.9 Cutaneous trunci reflex. CT, Cutaneous trunci muscle; FP, fasciculus proprius; LTN, lateral thoracic nerve. Image: from de Lahunta's Veterinary Neuroanatomy and Clinical Neurology, 5<sup>th</sup> Ed.

# Horner syndrome pathway





### Diagnostics

- Orthogonal radiographs including hyperflexed lateral elbow view
- Cervical spine + brachial plexus MRI
- +/- CSF tap
- +/- Electrodiagnostics (electromyography, nerve conduction velocity)
- Treatment (brachial plexus nerve sheath tumor)
  - Surgery forelimb amputation +/- hemilaminectomy
  - Adjunctive radiation therapy
  - Medical management anti-inflammatory steroid, analgesics

### References

- Añor S. Acute lower motor neuron tetraparesis. Vet Clin North Am Small Anim Pract. 2014 Nov;44(6):1201-22. doi: 10.1016/j.cvsm.2014.07.010. Epub 2014 Nov 1. PMID: 25441630.
- Brisson BA. Intervertebral disc disease in dogs. Vet Clin North Am Small Anim Pract. 2010 Sep;40(5):829-58. doi: 10.1016/j.cvsm.2010.06.001. PMID: 20732594.
- Coates JR, Wininger FA. Canine degenerative myelopathy. Vet Clin North Am Small Anim Pract. 2010 Sep;40(5):929-50. doi: 10.1016/j.cvsm.2010.05.001. PMID: 20732599.
- Couper E, De Decker S. Evaluation of prognostic factors for return of urinary and defecatory function in cats with sacrocaudal luxation. Journal of Feline Medicine and Surgery. 2020;22(10):928-934.
   doi:10.1177/1098612X19895053
- da Costa RC. Cervical spondylomyelopathy (wobbler syndrome) in dogs. Vet Clin North Am Small Anim Pract. 2010 Sep;40(5):881-913. doi: 10.1016/j.cvsm.2010.06.003. PMID: 20732597.
- De Decker S, Rohdin C, Gutierrez-Quintana R. (2024) Vertebral and spinal malformations in small brachycephalic dog breeds: Current knowledge and remaining questions. Vet J 304:106095.
- De Decker S, Packer RMA, Cappello R, Harcourt-Brown TR, Rohdin C, Gomes SA, Bergknut N, Shaw TA, Lowrie M, Gutierrez-Quintana R. Comparison of signalment and computed tomography findings in French Bulldogs, Pugs, and English Bulldogs with and without clinical signs associated with thoracic hemivertebra. J Vet Intern Med. 2019 Sep;33(5):2151-2159. doi: 10.1111/jvim.15556. Epub 2019 Aug 13. PMID: 31407402; PMCID: PMC6766535.
- de Lahunta A, Glass EN, Kent M. de Lahunta's. Veterinary Neuroanatomy and Clinical Neurology, 5<sup>th</sup> Ed. Philadelphia, PA: Elsevier, Inc., 2021.
- Dewey CW, da Costa RC. Practical Guide to Canine and Feline Neurology, 3<sup>rd</sup> Ed. Ames, IA: John Wiley & Sons, Inc., 2016.
- Guevar J, Penderis J, Faller K, Yeamans C, Stalin C, Gutierrez-Quintana R. Computer-assisted radiographic calculation of spinal curvature in brachycephalic "screw-tailed" dog breeds with congenital thoracic vertebral malformations: reliability and clinical evaluation. PLoS One. 2014 Sep 8;9(9):e106957. doi: 10.1371/journal.pone.0106957. PMID: 25198374; PMCID: PMC4157857.
- Luttgen PJ, Pechman RD, Hartsfield SM. Neuroradiology. Vet Clin North Am Small Anim Pract. 1988 May;18(3):501-28. doi: 10.1016/s0195-5616(88)50052-9. PMID: 3289243.
- Mauler DA, De Decker S, De Risio L, Volk HA, Dennis R, Gielen I, Van der Vekens E, Goethals K, Van Ham L. Spinal Arachnoid Diverticula: Outcome in 96 Medically or Surgically Treated Dogs. J Vet Intern Med. 2017 May:31(3):849-853. doi: 10.1111/ivim.14714. Epub 2017 Apr 20. PMID: 28426173: PMCID: PMC5435043.
- Smith CJ, Guevar J. Spinal subarachnoid diverticula in dogs: A review. Can Vet J. 2020 Nov;61(11):1162-1169. PMID: 33149353; PMCID: PMC7560765.
- Thrall DE. *Textbook of Veterinary Diagnostic Radiology, 6*th Ed. St. Louis, MO: Elsevier Saunders, 2013.



### Thank you to our lecture session sponsor







### **VETERINARY SPECIALTY HOSPITAL**

24-Hour Specialty, Emergency & Critical Care
Langley, BC

Greta VanDeventer, DVM, DACVS-SA surgery@bbvsh.com

Elizabeth Meiman, DVM, DACVIM (Neurology)

emeiman@bbvsh.com

neurology@bbvsh.com