Challenges of Fluid Therapy in Critical Patients

Carsten Bandt DVM, DACVECC

Goals

- Hydration Status
- Why to give fluids in CC
 4 D's of fluid therapy
- Fluid Endpoints
- Fluid resuscitation strategies
- Fluid in Sepsis

Which one is dehydrated?

Clinical Signs	of Dehydration
Estimated Percentage Dehydration	Physical Examination Findings
<5	History of fluid loss but no findings on physical examination
5	Dry oral mucous membranes but no panting or pathological tachycardia
7	Mild to moderate decreased skin turgor, dry oral mucous membranes, slight tachycardia, and normal pulse pressure.
10	Moderate to marked degree of decreased skin turgor, dry oral mucous membranes, tachycardia, and decreased pulse pressure.
12	Marked loss of skin turgor, dry oral mucous membranes, and significant signs of shock

How good are we?

- GI disease
 Sepsis
 Kidney disease
 Diabetis

Clinical signs of dehydration in children Mackenzie A, Shann F, Barnes G, Lancet, 1989 Dec 23-30;2(8678-8679):1529-30.			
False positive	False positive: signs present/ <4% dehydrated (%)	True positive: signs present/ >4% dehydrate d(%)	
Urea>6.5 mmol/l	17/58 (29)	29/41 (71)	< 0.01
Deep acidotic breathing	15/58 (26)	21/42 (50)	0.023
Ph< 7.35	11/56 (20)	18/42 (43)	0.024
CRFT	8/58 (14)	15 / 43 (35)	0.054
Skin turgor	26/58 (44)	28/45 (65)	0.056
RR	17/55 (31)	21/41 (51)	0.072
Tachy MM	42/59 (71)	35/43 (85)	0.154
Sunken eyes	43/59 (73)	35/43 (81)	0.447
HR > 130/min	30/59 (51)	24/43 (56)	0.768

Ability to predict dehydration > 4 %

- We are not really good at it!!
- Between 4% and 9% we overestimate
- in specific diseases the signs will change

The Accuracy of Clinical Assessment of Dehydration During Diabetic Ketoacidosis in Childhood

Koves I H et al. Diab Care 2004;27:2485-2487

Results

 Patients were between 5 and 10% dehydrated at presentation median of 8.7% dehydration

Results

- There was a good level of agreement between the primary and secondary assessor ($\kappa = 0.5$).
- There was no agreement between assessed and measured dehydration ($\kappa = 0.05$)

Results

- In patients who were <6% dehydrated (measured), the trend was to overestimate dehydration.
- Whereas in patients >6% dehydrated (measured), the trend was to underestimate dehydration.

Results

- Seventy percent of the patients had their hydration status incorrectly assessed:
 - 24% overestimated
 - 46% underestimated

Comparing the accuracy of the three popular clinical dehydration scales in children with diarrhea

Pringle et al. International Journal of Emergency Medicine 2011, 4:58

WHO Scale

	Α	в	С
Look at condition	Well, alert	Restless, irritable	Lethargic or unconscious
Eyes	Normal	Sunken	Sunken
Thirst	Drinks normally, not thirsty	Thirsty, drinks eagerly	Drinks poorly or not able to drink
Feel: Skin pinch	Goes back quickly	Goes back slowly	Goes back very slowly

Go	relick	Scale
Table 2 The 10- and 4-point Go	orelick Scale for dehydral	ion: for children 1 month-5 years; 4-
Characteristic	No or minimal	Moderate to severe dehvdration
General appearance	Alert	Restless, lethargic, unconscious
Capillary refill	Normal	Prolonged or minimal
Tears	Present	Absent
Mucous membranes	Moist	Dry, very dry
Eyes	Normal	Sunken; deeply sunken
Breathing	Present	Deep; deep and rapid
Quality of pulses	Normal	Thready; weak or impalpable
Skin elasticity	Instant recoil	Recoil slowly; recoil > 2 s
Heart rate	Normal	Tachycardia

ty
n)

Conclusions

Clinical scoring system used did not reduce the variability of assessment of dehydration compared to doctors' conventional methods.

Lets face it!

We kind of suck in predicting dehydration!!!

But...

Why to give fluids?

In hope that our patient is fluid responsive

Fluid Resuscitation

3 main goals to achieve:

- ✓ Restoration of adequate oxygen delivery
- Resolution of existing oxygen debt
- Elimination of anaerobic metabolites

Dependency of Oxygen Demand on Delivery

Behaviour of oxygen consumption and the oxygen extraction rate with decreasing oxygen supply

Determinants of Oxygen Delivery and Consumption

VO₂: Oxygen Consumption

The 4 D's of Fluid Therapy

Treat Fluids as Drugs (contra) indications Adverse effecs

- 2. Fluid Dose
- Timing, initial dose, speed, cumulative dose
- 3. Duration
- 3. Duration
 Stop when no longer fluid responsive
 ✓ Use dynamic indices when possible
 4. De-escalation
 ✓ Deresuscitation if fluid overload (FO)
 Fluid overload causes increased morbidity and mortality

Endpoints of Fluid Resuscitation

3 main goals to achieve

- Restoration of adequate oxygen delivery
 Resolution of existing oxygen debt
- ✓ Elimination of anaerobic metabolites

Traditional endpoints ✓HR, BP, mental status, urine output

Global endpoints ✓ Lactate , base deficit , ScVO2

What we all learned in Veterinary School:

Shock: 90 mls /kg (dog) 40 mls /kg (cat)

And why it doesn't always work that way!!!

Severe Polytrauma

6 YO F Springer Sp. Weighing 18 kg HBC 30 min earlier Initially: Unconscious, anisocoria

- HR 220, pale mucous membranes, T 97.4F, poor femoral pulse quality
 Tachypnea, RR 85/min
 BP 50 systolic

Initial treatment

Place IV catheter ✓ PCV/TS 36/6.2 ✓ Lactate 7.6mmol/L

1500 ml LRS IV over 30 minutes Improves pulse quality and heart rate Recheck bloodwork PCV 32/TS 5.0 Lactate 0.8

20 minutes after bolus ends...

Neurological Status:

- Dilated pupils, unresponsive to light
- Cardiovascular Status:
- Bradycardic HR 44 bpm, femoral pulses fair-good
 Respiratory Status:
- - ✓ Severe dyspnea, cyanosis

Why did we give a bolus of fluids?

Pros Cons

Alternatives?

What happened?

Severe head trauma (MGCS:5)

- ✓ Must maintain cerebral blood flow
- ✓ But large volumes of isotonic crystalloids may exacerbate cerebral edema

Pulmonary contusions

Will be worsened by excessive fluid therapy

The Guide to Fluid Therapy

- **1.** Resuscitation Endpoints
- 2. Resuscitation Strategies

Choosing an Endpoint

- Parameters must be reliable, easy to obtain and with timely results in all critically ill patients
- Endpoints must accurately reflect physiologic state of the patient
- Algorithm-based approach to decrease patient morbidity/mortality

Traditional Endpoints

_					
	0.0	-	-	40	
	eа	цι	14	ιe	

Respiratory rate

Urine output

Systolic BP

Mucus membrane color Lactate

Capillary refill time

Other Endpoints

Central venous pressure (CVP)

Mean arterial pressure (MAP)

Hematocrit (HCT)

Cardiac output, SVR

Central venous oxygen saturation (ScvO₂)

Static versus Dynamic Markers

Dynamic Markers (provoking the circulation by inducing changes of loading conditions):

- Heart- Lung interactions
- Postural changes

Fluid Responsiveness

Caudal vena cava collapsibility index as a tool to predict fluid responsiveness in dogs
Pablo A Donati ¹ , Juan M Guevara ¹ , Victoria Ardiles ² , Ellana C Guillemi ¹ , Leonel Londoño ³ , Arnaldo Dubin ⁴
Affiliations + expand PMID: 33063922 DDI: 10.1111/vec.13009
Abstract
Objective: To evaluate the use of the caudal vene cava collapsibility index (CVCCI) as a predictor of fluid responsiveness in hospitalized, critically ill dogs with hemodynamic or tissue perfusion abnormalities.
Design: Retrospective observational study.
Setting: Private referral center.
Animals: Twenty-seven critically II, spontaneously breathing dogs with compromised hemodynamics or tissue hypoperfusion.
Interventions: None.
Measurements and main results: The relation is model and control model and the object of the digate interface of the control model and the distribution of the control model and the distribution of the control model and the distribution of distribution o
Conclusions: The results of this small cohort study suggest that CVCCI can accurately predict. Naid responsiveness in critically II dogs with perfusion abnormalities. Further research is necessary to extrapolate these results to larger populations of hospitalized dogs.

Great Veins Variation (over the respiratory cycle)
Caudal Vena Cava Collapsibilty Index
In controlled ventilation, the IVC expands in inspiration and reduces in expiration
- · · · · · · · · · · · · · · · · · · ·
This variation is abolished when RAP is high. The absence of IVC respiratory variation predicts Fluid Unresponsiveness Large variations of IVC respiratory variation accurately predicts FR
in the formation in the

Resuscitation Strategies

Standard resuscitation

Damage Control Resuscitation

Hypertonic resuscitation

Permissive hypotensive resuscitation

Supra-physiologic resuscitation

Standard Resuscitation

Uses traditional endpoints to maintain tissue perfusion and oxygen delivery

Administration of crystalloids, colloids, blood products, vasopressors and/or ionotropes

Patient population ✓ Most commonly practiced approach to resuscitation regardless of etiology for CV instability

Lack of standard algorithm approach

Brendon, 3 year old, MC, Great Dane

Sudden onset of panting Distended abdomen HR: 220/min

Blood gas: • Metabolic Acidosis • Lactate 7 mmol/1 • MAP 45 mmHg

Which strategy would you have

used? Standard resuscitation

Damage control resuscitation

Permissive hypotensive resuscitation

Supra-physiologic resuscitation

Early goal-directed therapy

Brendon, 3 year old, MC, Great Dane What do you want to do?

Brendon, 3 year old, MC, **Great Dane**

Strategy: ✓ Standard resuscitation

Hypertonic Resuscitation

Similar endpoints as standard resuscitation

Use of hypertonic agents as main resuscitative fluid

Proposed benefits

- Lower volumes required to attain intravascular volume expansion
 Reduce endothelial and tissue edema
 Improve microcirculation
 Immunomodulatory effects

Head Trauma

Key is normovolemia

- "Just enough" resuscitation
- Consider hypertonic fluids
- Avoid Colloids and Albumin

Head Trauma

- Will decrease inflammatory cascade
- ✓ Prevent fluid overload

Head Trauma

Goal is to reach:

- ✓ MAP: 65-70 mm HG
- Improvement of neurological signs (modified Glascow Coma Score)
- ✓ Not to volume overload your patient

Thoracic Trauma

Avoid Volume overload:

Use low volume resuscitation and permissive hypotension strategy

Excessive volume of fluids will leak into lungs and worsen the interstitial edema

Permissive Hypotensive Resuscitation

Hypotensive resuscitation
Administration of small volume resuscitation to achieve lower than normal end-points.
Uncontrolled, closed body cavity hemorrhage
Pulmonary contusions
Noncardiogenic pulmonary edema

Attempt to minimize further bleeding due to fluid administration in preparation for surgery
 Endpoint: MAP (60-65mmHg)

Hypotensive resuscitation

Definition: deliberate tolerance of lower MAP in face of uncontrolled hemorrhage

Goal: maximize body's homeostasis Arteriolar vasconstriction Increased blood viscosity Thrombus formation

Controversial Optimal BP debatable

Decreased blood loss and lower mortality in animal models (Remi

Slight increase in survival (70% vs. 62%) humans with torso

Permissive Hypotensive Resuscitation

Hypotensive resuscitation

- Balance of maintaining adequate perfusion, but preventing exsanguination until surgical bleeding can be controlled
- Administration of small volume resuscitation to achieve lower than normal end-points Uncontrolide, closef body cavity hemorrhage Unimonary cavity memorrhage Non-cardiogenic pulmonary edema
- Attempt to minimize further bleeding due to fluid administration in preparation for surgery Endpoint: MAP (osmHg) I fLATe <5; then resuscitate with IVF or blood products I fAAP <5; the check perturbation I fAAP <5; the check perturbation I fAAP <5; the check perturbation I fleature is poor >> check per activate and consider opiodes

Supra-physiologic Resuscitation

Cardiac output is main endpoint ✓ Maximize cardiac output to predefined target

Patient population Septic shock

Proposed benefits

Maximize oxygen delivery to the tissues Avoid hypoxic related organ injury

Septic Shock

Animals in septic shock secondary to trauma may need significant fluid therapy

Endpoints for fluid resuscitation are:

- ✓MAP 65 mmHg
- ✓ Normal Lactate
- Oxygen Delivery

Supra-physiologic Resuscitation

Cardiac output is main endpoint ✓ Maximize cardiac output to predefined target

Patient population ✓ Septic shock

Proposed benefits

- Maximize oxygen delivery to the tissues
 Avoid hypoxic related organ injury

Definition of sepsis

'Sepsis is a life-threatening condition that arises when the <u>body's response to an infection</u> injures its own tissues and organs.

The 'Merinoff Definition', September 2010

Protocol for Early Goal-Directed

Systemic circulation in sepsis

Early sepsis:

- Low systemic vascular resistance (SVR) and normal to decreased CO
- Heart is already compromised by poor contractility

Stroke volume is maintained but there is an increase in left ventricular end-systolic volume (LVESV) and left ventricular end-diastolic volume (LVEDV) and decrease in ejection fraction

Systemic circulation in sepsis

There is also a diastolic dysfunction due to decreased left ventricular compliance and subsequent increased left ventricular end-diastolic pressure (LVEDP)

Severe Sepsis:

During severe sepsis, there is a decrease in LVEDV and LVESP. There is hypotension.

Peripheral circulation in

- SCDSIS NO serves as a vasodilator Released in response to high blood flow rate and signaling molecules (Ach and bradykinin) Highly localized and effects are brief If NO synthesis is inhibited, blood pressure skyrockets NO aids in gas exchange between hemoglobin and cells
 - Hemoglobin is a vasoconstrictor, Fe scavenges NO NO is protected by cysteine group when O2 binds to hemoglobin During O2 delivery, NO locally dilates blood vessels to aid in gas exchange Excess NO is picked up by HGB with CO2

Peripheral circulation in Vasodilation: SCDSIS In a physhologic stage NO, diffuses into vascular smooth muscle cells and activates guanylyl cyclase, which decreases intracellular calcium concentration and activates potassium channels causing smooth muscle relaxation

During sepsis NO is produced in an excess amount by iNOS

Increased NO leads to hyper polarization of potassium channels and persistent relaxation of the smooth muscle cells

So how can sepsis outcomes be improved?

Treatment strategy for septic cardiomyopathy

Strategy is to achieve a balanced DO2/VO2 by increasing cardiac index to improve DO2

VO2 can be decreased by sedation, mechanical ventilation, antipyretics

2012 Shiviying Sepsis Campaign recommends specific physiologic goals for fluid resuscitation:

- MAP > 65 mmHg
 CVP 8-12 mmHg (or 12-15 during mechanical vent)
 Central venous O₂ sat > 65% or Mixed venous > 70%
 Urine output > 0.5 ml/kg/h
 Normalization of lactate

It is important to note that these goals are for the <u>first 6</u> <u>hours</u> of sepsis therapy We are going to dive deeper into fluids and central venous O_2 saturation (ScvO₂) in a few slides

Fluid Management

- 2018 Surviving Sepsis Campaign recommends specific physiologic goals for fluid resuscitation;
- 30 mls/kg over first 3 hours

Fluid Management

- Increasing preload with increase stroke volume based on Frank–Starling relationships
- Cardiomyopathy will shift the Frank–Starling curve and over-aggressive fluid management can lead to worsening organ failure
- SOAP trial showed that a positive fluid balance is a poor prognostic factor in sepsis

Vasopressors

Norepinephrine:

- has stronger alpha adrenergic profile (rather then beta-1)
- increases mainly afterload

Vasopressors

- First-line: Norepinephrine (dose: 0.01 1 µg/kg/min)
- Increases MAP mainly by vasoconstriction, but also is a mild inotrope which is important for sepsis-mediated cardiac stunning
- Low doses improve cardiac output, and cerebral, renal, and splanchnic blood flow
- Compared to dopamine: Less tachycardia, fewer arrhythmias, lower RR of death (0.91; 0.83–0.99)

Vasopressors

- Second-line: Vasopressin (dose: 0.01 0.04 units/min)
 - Goal is to decrease dose of NE
 - Reasonable to start when NE dose gets to $0.2 \ \mu g/kg/min$
 - Quality of evidence is moderate

Vasopressors

- Third-line: Epinephrine (door: 0.01-1 pg//sg/min)
 Same dosing regimen as norepinephrine
- Can use Phenylephrine infusion in certain situations, e.g. avoidance of beta-adrenergic activation if patient has rapid Afib

Thank You

